Recurrent chaotic clustering and slow chaos in adaptive networks (2402.17646v1)
Abstract: Adaptive dynamical networks are network systems in which the structure co-evolves and interacts with the dynamical state of the nodes. We study an adaptive dynamical network in which the structure changes on a slower time scale relative to the fast dynamics of the nodes. We identify a phenomenon we refer to as recurrent adaptive chaotic clustering (RACC), in which chaos is observed on a slow time scale, while the fast time scale exhibits regular dynamics. Such slow chaos is further characterized by long (relative to the fast time scale) regimes of frequency clusters or frequency-synchronized dynamics, interrupted by fast jumps between these regimes. We also determine parameter values where the time intervals between jumps are chaotic and show that such a state is robust to changes in parameters and initial conditions.
- L. F. Abbott and S. B. Nelson, “Synaptic plasticity: Taming the beast,” Nature Neuroscience 3, 1178–1183 (2000).
- O. Popovych, S. Yanchuk, and P. Tass, “Self-organized noise resistance of oscillatory neural networks with spike timing-dependent plasticity,” Scientific Reports 3, 2926 (2013).
- T. Gross, C. J. D. D’Lima, and B. Blasius, “Epidemic Dynamics on an Adaptive Network,” Physical Review Letters 96, 208701 (2006).
- T. Gross and H. Sayama, “Adaptive networks,” in Adaptive Networks: Theory, Models and Applications, edited by T. Gross and H. Sayama (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009) pp. 1–8.
- L. Horstmeyer and C. Kuehn, “Adaptive voter model on simplicial complexes,” Physical Review E 101, 022305 (2020).
- F. Schweitzer, “Social percolation revisited: From 2d lattices to adaptive networks,” Physica A: Statistical Mechanics and its Applications 570, 125687 (2021).
- E. A. Martens and K. Klemm, “Cyclic structure induced by load fluctuations in adaptive transportation networks,” in Progress in Industrial Mathematics at ECMI 2018, edited by I. Faragó, F. Izsák, and P. L. Simon (Springer International Publishing, Cham, 2019) pp. 147–155.
- A. Pikovsky and Y. Maistrenko, eds., Synchronization: Theory and Application, Vol. 109 (Kluwer Academic Publishers, 2003).
- T. Gross and B. Blasius, “Adaptive coevolutionary networks: a review,” Journal of The Royal Society Interface 5, 259–271 (2008).
- N. Caporale and Y. Dan, “Spike timing-dependent plasticity: A Hebbian learning rule,” Annu. Rev. Neurosci. 31, 25–46 (2008).
- D. V. Kasatkin, S. Yanchuk, E. Schöll, and V. I. Nekorkin, “Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings,” Physical Review E 96, 62211 (2017).
- R. Berner, E. Schöll, and S. Yanchuk, “Multiclusters in networks of adaptively coupled phase oscillators,” SIAM Journal on Applied Dynamical Systems 18, 2227–2266 (2019).
- P. Feketa, A. Schaum, and T. Meurer, “Synchronization and multicluster capabilities of oscillatory networks with adaptive coupling,” IEEE Transactions on Automatic Control 66, 3084–3096 (2021).
- O. V. Popovych, M. N. Xenakis, and P. A. Tass, “The Spacing Principle for Unlearning Abnormal Neuronal Synchrony,” PLOS ONE 10, e0117205 (2015).
- T. Aoki, “Self-organization of a recurrent network under ongoing synaptic plasticity,” Neural Networks 62, 11–19 (2015).
- V. Röhr, R. Berner, E. L. Lameu, O. V. Popovych, and S. Yanchuk, “Frequency cluster formation and slow oscillations in neural populations with plasticity,” PLOS ONE 14, e0225094 (2019).
- M. Thiele, R. Berner, P. A. Tass, E. Schöll, and S. Yanchuk, “Asymmetric adaptivity induces recurrent synchronization in complex networks,” Chaos: An Interdisciplinary Journal of Nonlinear Science 33, 023123 (2023).
- S. Bornholdt and T. Röhl, “Self-organized critical neural networks,” Phys. Rev. E 67, 066118 (2003).
- J. Fialkowski, S. Yanchuk, I. M. Sokolov, E. Schöll, G. A. Gottwald, and R. Berner, “Heterogeneous Nucleation in Finite-Size Adaptive Dynamical Networks,” Physical Review Letters 130, 067402 (2023).
- C. Kuehn, “Multiscale dynamics of an adaptive catalytic network,” Mathematical Modelling of Natural Phenomena 14, 402 (2019).
- C. Kuehn, Multiple Time Scale Dynamics, Vol. 191 (Springer-Verlag GmbH, 2015).
- S. H. Strogatz, “Exploring complex networks,” Nature 410, 268–276 (2001).
- S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex networks: Structure and dynamics,” Physics Reports 424, 175–308 (2006).
- A. S. d. Mata, ‘‘Complex networks: a mini-review,” Brazilian Journal of Physics 50, 658–672 (2020).
- Y. Zou, R. V. Donner, N. Marwan, J. F. Donges, and J. Kurths, “Complex network approaches to nonlinear time series analysis,” Physics Reports 787, 1–97 (2019).
- O. V. Maslennikov and V. I. Nekorkin, “Adaptive dynamical networks,” Physics-Uspekhi 60, 694 (2017).
- J. Sawicki, R. Berner, S. A. M. Loos, M. Anvari, R. Bader, W. Barfuss, N. Botta, N. Brede, I. Franović, D. J. Gauthier, S. Goldt, A. Hajizadeh, P. Hövel, O. Karin, P. Lorenz-Spreen, C. Miehl, J. Mölter, S. Olmi, E. Schöll, A. Seif, P. A. Tass, G. Volpe, S. Yanchuk, and J. Kurths, “Perspectives on adaptive dynamical systems,” Chaos: An Interdisciplinary Journal of Nonlinear Science 33, 071501 (2023).
- C. Zhou and J. Kurths, “Dynamical weights and enhanced synchronization in adaptive complex networks,” Phys. Rev. Lett. 96, 164102 (2006).
- M. Wiedermann, J. F. Donges, J. Heitzig, W. Lucht, and J. Kurths, “Macroscopic description of complex adaptive networks coevolving with dynamic node states,” Physical Review E 91, 052801 (2015).
- E. A. Martens and K. Klemm, “Transitions from trees to cycles in adaptive flow networks,” Frontiers in Physics 5, 62 (2017).
- B. Duchet, C. Bick, and A. Byrne, “Mean-Field Approximations With Adaptive Coupling for Networks With Spike-Timing-Dependent Plasticity,” Neural Computation 35, 1481–1528 (2023).
- T. Aoki and T. Aoyagi, “Co-evolution of phases and connection strengths in a network of phase oscillators,” Phys. Rev. Lett. 102, 034101 (2009).
- R. Berner, S. Vock, E. Schöll, and S. Yanchuk, “Desynchronization Transitions in Adaptive Networks,” Physical Review Letters 126, 028301 (2021).
- B. Jüttner and E. A. Martens, “Complex dynamics in adaptive phase oscillator networks,” Chaos: An Interdisciplinary Journal of Nonlinear Science 33, 053106 (2023).
- H. Markram, W. Gerstner, and P. J. Sjöström, “Spike-timing-dependent plasticity: A comprehensive overview,” Frontiers in Synaptic Neuroscience 4, 2 (2012).
- N. Fenichel, “Geometric singular perturbation theory for ordinary differential equations,” Journal of Differential Equations 31, 53–98 (1979).
- M. Krupa and P. Szmolyan, “Relaxation Oscillation and Canard Explosion,” Journal of Differential Equations 174, 312–368 (2001).
- P. Szmolyan and M. Wechselberger, “Canards in R3,” Journal of Differential Equations 177, 419–453 (2001).
- S. Wieczorek, P. Ashwin, C. M. Luke, and P. M. Cox, “Excitability in ramped systems: The compost-bomb instability,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467, 1243–1269 (2011).
- M. Ciszak, F. Marino, A. Torcini, and S. Olmi, “Emergent excitability in populations of nonexcitable units,” Phys. Rev. E 102, 050201 (2020).
- H. Sakaguchi and Y. Kuramoto, “A Soluble Active Rotater Model Showing Phase Transitions via Mutual Entertainment,” Progress of Theoretical Physics 76, 576–581 (1986).
- B. Pietras and A. Daffertshofer, “Network dynamics of coupled oscillators and phase reduction techniques,” Physics Reports 819, 1–105 (2019).
- A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” The Journal of Physiology 117, 500–544 (1952).
- A. Bergner, M. Frasca, G. Sciuto, A. Buscarino, E. J. Ngamga, L. Fortuna, and J. Kurths, “Remote synchronization in star networks,” Phys. Rev. E 85, 026208 (2012).
- I. Leyva, I. Sendiña-Nadal, R. Sevilla-Escoboza, V. P. Vera-Avila, P. Chholak, and S. Boccaletti, “Relay synchronization in multiplex networks,” Scientific Reports 8, 8629 (2018).
- G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory,” Meccanica 15, 9–20 (1980).
- A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov exponents from a time series,” Physica D: Nonlinear Phenomena 16, 285–317 (1985).
- A. Vanselow, S. Wieczorek, and U. Feudel, “When very slow is too fast - collapse of a predator-prey system,” Journal of Theoretical Biology 479, 64–72 (2019).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.