2000 character limit reached
Prequantisation from the path integral viewpoint (2402.17629v2)
Published 27 Feb 2024 in math-ph, math.MP, and quant-ph
Abstract: The quantum mechanically admissible definitions of the factor $\exp\big[(i/\hbar)S(\gamma)\big]$ in the Feynman integral are put in bijection with the prequantisations of Kostant and Souriau. The different allowed expressions of this factor -- the inequivalent prequantisations -- are classified. The theory is illustrated by the Aharonov-Bohm experiment and by identical particles.
- P. A. Horvathy, “Classical Action, the Wu-Yang Phase Factor and Prequantization,” Lect. Notes Math. 836 (1980), 67-90 doi:10.1007/BFb0089727
- B. Kostant, “On certain unitary representations which arise from a quantization theory,” Conf. Proc. C 690722 (1969), 237-253 doi:10.1007/3-540-05310-7_28
- J.-M. Souriau, Structure des systèmes dynamiques, Dunod (1970, © 1969); Structure of Dynamical Systems. A Symplectic View of Physics, translated by C.H. Cushman-de Vries (R.H. Cushman and G.M. Tuynman, Translation Editors), Birkhäuser, 1997. The “monopole without strings” discussions WuYangLag ; BalaMarmo are discussed also in the Prequantization Chap. V. written around 1975 for the planned but never completed revised edition of Souriau’s book.
- D. J. Simms and N. M. J. Woodhouse, “Lectures on Geometric Quantization,” Lect. Notes Phys. 53 (1976), 1-166 doi:10.1007/3-540-07860-6
- J.S. Dowker, “Selected topics in topology and quantum field theory,”, Austin Lectures, Jan - May 1979.
- The results presented here were obtained in collaboration with J. Kollár.
- M. Asorey, “Some Remarks on the Classical Vacuum Structure of Gauge Field Theories,” J. Math. Phys. 22 (1981), 179 [erratum: J. Math. Phys. 25 (1984), 187] doi:10.1063/1.524732
- J. L. Friedman and R. D. Sorkin, “DYON SPIN AND STATISTICS: A FIBER BUNDLE THEORY OF INTERACTING MAGNETIC AND ELECTRIC CHARGES,” Phys. Rev. D 20 (1979), 2511-2525 doi:10.1103/PhysRevD.20.2511 J. L. Friedman and R. D. Sorkin, “A SPIN STATISTICS THEOREM FOR COMPOSITES CONTAINING BOTH ELECTRIC AND MAGNETIC CHARGES,” Commun. Math. Phys. 73 (1980), 161-196 doi:10.1007/BF01198122
- D. J. Simms, “GEOMETRIC ASPECTS OF THE FEYNMAN INTEGRAL,” Lect. Notes Math. 836 (1980), 167-170 See also D. J. Simms, “Geometric Quantization and the Feynman Integral.” Contribution to: Mathematical Problems in Feynman Path Integral, 220-223.
- M. G. G. Laidlaw and C. M. DeWitt, “Feynman functional integrals for systems of indistinguishable particles,” Phys. Rev. D 3 (1971), 1375-1378 doi:10.1103/PhysRevD.3.1375
- J-M Souriau “Quantification géométrique. Applications.” Ann. Inst. H. Poincaré Sect. A (N.S.) 6 311-341 (1967)
- L. Schulman, “A Path integral for spin,” Phys. Rev. 176 (1968), 1558 -1569 doi:10.1103/PhysRev.176.1558. L. S. Schulman, “Approximate topologies” J. Math. Phys. 12, 304 (1971) https://doi.org/10.1063/1.1665592
- J. S. Dowker, “Quantum mechanics and field theory on multiply connected and on homogeneous spaces,” J. Phys. A 5 (1972), 936-943 doi:10.1088/0305-4470/5/7/004
- P. A. Horvathy, “Quantization in Multiply Connected Spaces,” Phys. Lett. A 76 (1980), 11-14 doi:10.1016/0375-9601(80)90133-4
- P. A. Horvathy, “Prequantisation From Path Integral Viewpoint,” Lect. Notes Math. 905 (1982), 197-206 CPT-80-P-1230.
- P. A. Horvathy, G. Morandi and E. C. G. Sudarshan, “Inequivalent quantizations in multiply connected spaces,” Nuovo Cim. D 11 (1989), 201-228 doi:10.1007/BF02450240
- P. A. M. Dirac, “The Lagrangian in quantum mechanics,” Phys. Z. Sowjetunion 3 (1933), 64-72
- R. P. Feynman, “The principle of least action in quantum mechanics,” doi:10.1142/9789812567635_0001
- P. A. Horvathy, “AN ACTION PRINCIPLE FOR ISOSPIN,” BI-TP-82-19. Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Torino, 982, Atti Acad. Sci. Torino, Suppl. 117, 163-169 Accademia delle scienze (1983).
- T. T. Wu and C. N. Yang, “Dirac’s Monopole Without Strings: Classical Lagrangian Theory,” Phys. Rev. D 14 (1976), 437-445 doi:10.1103/PhysRevD.14.437
- A. P. Balachandran, G. Marmo and A. Stern, “Magnetic Monopoles With No Strings,” Nucl. Phys. B 162 (1980), 385-396 doi:10.1016/0550-3213(80)90346-6, A. P. Balachandran, G. Marmo, B. S. Skagerstam and A. Stern, “Supersymmetric Point Particles and Monopoles With No Strings,” Nucl. Phys. B 164 (1980), 427-444 [erratum: Nucl. Phys. B 169 (1980), 547] doi:10.1016/0550-3213(80)90520-9
- https://en.wikipedia.org/wiki/Betti number
- M. Asorey and L. J. Boya, “ELECTROMAGNETISM WITHOUT MONOPOLES IS POSSIBLE IN NONTRIVIAL U(1) FIBER BUNDLES,” J. Math. Phys. 20 (1979), 2327 doi:10.1063/1.524013
- J. M. Leinaas and J. Myrheim, “On the theory of identical particles,” Nuovo Cim. B 37 (1977), 1-23 doi:10.1007/BF02727953
- F. Wilczek, “Quantum Mechanics of Fractional Spin Particles,” Phys. Rev. Lett. 49 (1982), 957-959 doi:10.1103/PhysRevLett.49.957 Wilczek, Frank (2021). Fundamentals : Ten Keys to Reality. New York, New York: Penguin Press. pp. 89-90. ISBN 9780735223790. LCCN 2020020086
- P. A. Horvathy and J. Kollar, “The Nonabelian Aharonov-Bohm Effect in Geometric Quantization,” Class. Quant. Grav. 1 (1984), L61 doi:10.1088/0264-9381/1/6/002.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.