Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Electrically driven cascaded photon-emission in a single molecule (2402.17536v1)

Published 27 Feb 2024 in cond-mat.mes-hall

Abstract: Controlling electrically-stimulated quantum light sources (QLS) is key for developing integrated and low-scale quantum devices. The mechanisms leading to quantum emission are complex, as a large number of electronic states of the system impacts the emission dynamics. Here, we use a scanning tunneling microscope (STM) to excite a model QLS, namely a single molecule. The luminescence spectra reveal two lines, associated to the emission of the neutral and positively charged molecule, both exhibiting single-photon source behavior. In addition, we find a correlation between the charged and neutral molecule's emission, the signature of a photon cascade. By adjusting the charging/discharging rate, we can control these emission statistics. This generic strategy is further established by a rate equation model revealing the complex internal dynamics of the molecular junction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).
  2. Rogers, L. J. et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat. Commun. 5, 4739 (2014).
  3. Quantum nanophotonics with group iv defects in diamond. Nat. Commun. 10, 5625 (2019).
  4. Higginbottom, D. B. et al. Optical observation of single spins in silicon. Nature 607, 266–270 (2022).
  5. Prabhu, M. et al. Individually addressable and spectrally programmable artificial atoms in silicon photonics. Nat. Commun. 14 (2023).
  6. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).
  7. García de Arquer, F. P. et al. Semiconductor quantum dots: Technological progress and future challenges. Science 373, eaaz8541 (2021).
  8. Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett. 83, 2722–2725 (1999).
  9. Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).
  10. Wang, D. et al. Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019).
  11. Murtaza, G. et al. Efficient room-temperature molecular single-photon sources for quantum key distribution. Opt. Express 31, 9437–9447 (2023).
  12. Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615–1628 (2021).
  13. Waks, E. et al. Quantum cryptography with a photon turnstile. Nature 420, 762 (2002).
  14. Beveratos, A. et al. Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002).
  15. O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).
  16. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
  17. Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).
  18. Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).
  19. Electrically driven photon antibunching from a single molecule at room temperature. Nat. Commun. 3 (2012).
  20. Mizuochi, N. et al. Electrically driven single-photon source at room temperature in diamond. Nat. Photon. 6, 299–303 (2012).
  21. Bentham, C. et al. Single-photon electroluminescence for on-chip quantum networks. Appl. Phys. Lett. 109, 161101 (2016).
  22. Lin, X. et al. Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nat. Commun. 8, 1132 (2017).
  23. Fischer, K. A. et al. Signatures of two-photon pulses from a quantum two-level system. Nat. Phys. 13, 649–654 (2017).
  24. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).
  25. Jiang, S. et al. Many-body description of stm-induced fluorescence of charged molecules. Phys. Rev. Lett. 130, 126202 (2023).
  26. Vibrationally Resolved Fluorescence Excited with Submolecular Precision. Science 299, 542–546 (2003).
  27. Zhang, Y. et al. Visualizing coherent intermolecular dipole-dipole coupling in real space. Nature 531, 623–627 (2016).
  28. Imada, H. et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538, 364–367 (2016).
  29. Doppagne, B. et al. Vibronic spectroscopy with submolecular resolution from stm-induced electroluminescence. Phys. Rev. Lett. 118, 127401 (2017).
  30. Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956).
  31. Single-molecule fluctuations in a tunnel junction: A study by scanning-tunnelling-microscopy–induced luminescence. EPL 74, 313 (2006).
  32. Exciton dynamics of c60-based single-photon emitters explored by hanbury brown–twiss scanning tunnelling microscopy. Nat. Commun. 6, 8461 (2015).
  33. Zhang, L. et al. Electrically driven single-photon emission from an isolated single molecule. Nat. Commun. 8, 580 (2017).
  34. Luo, Y. et al. Electrically driven single-photon superradiance from molecular chains in a plasmonic nanocavity. Phys. Rev. Lett. 122, 233901 (2019).
  35. Rosławska, A. et al. Atomic-scale dynamics probed by photon correlations. ACS Nano 14, 6366–6375 (2020).
  36. Yersin, H. Triplet Emitters for OLED Applications. Mechanisms of Exciton Trapping and Control of Emission Properties, 1–26 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004).
  37. Doppagne, B. et al. Electrofluorochromism at the single-molecule level. Science 361, 251–255 (2018).
  38. Exciton-Trion Conversion Dynamics in a Single Molecule. ACS Nano 15, 7694–7699 (2021).
  39. Hung, T.-C. et al. Bipolar single-molecule electroluminescence and electrofluorochromism. Phys. Rev. Res. 5, 033027 (2023).
  40. Rosławska, A. et al. Single Charge and Exciton Dynamics Probed by Molecular-Scale-Induced Electroluminescence. Nano Lett. 18, 4001–4007 (2018).
  41. Miwa, K. et al. Many-Body State Description of Single-Molecule Electroluminescence Driven by a Scanning Tunneling Microscope. Nano Lett. 19, 2803–2811 (2019).
  42. Nonclassical radiation from diamond nanocrystals. Phys. Rev. A 64, 061802 (2001).
  43. Photon-emission-correlation spectroscopy as an analytical tool for solid-state quantum defects. PRX Quantum 4, 010202 (2023).
  44. Rosławska, A. et al. Mapping Lamb, Stark, and Purcell Effects at a Chromophore-Picocavity Junction with Hyper-Resolved Fluorescence Microscopy. Phys. Rev. X 12, 011012 (2022).
  45. Single-molecule time-resolved spectroscopy in a tunable stm nanocavity. Nano Lett. 24, 1629–1634 (2024).
  46. Charge-state lifetimes of single molecules on few monolayers of NaCl. Nat. Commun. 14 (2023).
  47. Local thickness determination of thin insulator films via localized states. Appl. Phys. Lett. 104, 231606 (2014).
  48. Dräbenstedt, A. et al. Low-temperature microscopy and spectroscopy on single defect centers in diamond. Phys. Rev. B 60, 11503–11508 (1999).
  49. Schröder, T. et al. How blinking affects photon correlations in multichromophoric nanoparticles. ACS Nano 15, 18037–18047 (2021).
  50. Time correlations between the two sidebands of the resonance fluorescence triplet. Phys. Rev. Lett. 45, 617–620 (1980).
  51. Moreau, E. et al. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett. 87, 183601 (2001).
  52. He, Y.-M. et al. Cascaded emission of single photons from the biexciton in monolayered wse2. Nat. Commun. 7, 13409 (2016).
  53. Fatayer, S. et al. Probing molecular excited states by atomic force microscopy. Phys. Rev. Lett. 126, 176801 (2021).
  54. Peng, J. et al. Atomically resolved single-molecule triplet quenching. Science 373, 452–456 (2021).
  55. Phosphorescence and fluorescence of phthalocyanines. J. Chem. Phys. 55, 4131–4140 (1971).
  56. A density functional theory study of phosphorescence and triplet–triplet absorption for nonlinear absorption chromophores. J. Chem. Phys. 117, 7128–7136 (2002).
  57. Chen, G. et al. Spin-triplet-mediated up-conversion and crossover behavior in single-molecule electroluminescence. Phys. Rev. Lett. 122, 177401 (2019).
  58. Yang, B. et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics 14, 693–699 (2020).
  59. Imai-Imada, M. et al. Orbital-resolved visualization of single-molecule photocurrent channels. Nature 603, 829–834 (2022).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 3 likes.