2000 character limit reached
Type II Multi-indexed Little $q$-Jacobi and Little $q$-Laguerre Polynomials (2402.17272v2)
Published 27 Feb 2024 in math-ph, hep-th, math.CA, math.MP, and nlin.SI
Abstract: For the isospectral Darboux transformations of the discrete quantum mechanics with real shifts, there are two methods: type I and type II constructions. Based on the type I construction, the type I multi-indexed little $q$-Jacobi and little $q$-Laguerre orthogonal polynomials were presented in J. Phys. {\bf A50} (2017) 165204. Based on the type II construction, we present the type II multi-indexed little $q$-Jacobi and little $q$-Laguerre orthogonal polynomials.
- D. Gómez-Ullate, N. Kamran and R. Milson, “An extended class of orthogonal polynomials defined by a Sturm-Liouville problem,” J. Math. Anal. Appl. 359 (2009) 352-367, arXiv:0807.3939[math-ph].
- S. Odake and R. Sasaki, “Infinitely many shape invariant potentials and new orthogonal polynomials,” Phys. Lett. B679 (2009) 414-417, arXiv:0906.0142[math-ph].
- S. Odake and R. Sasaki, “Another set of infinitely many exceptional (Xℓsubscript𝑋ℓX_{\ell}italic_X start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT) Laguerre polynomials,” Phys. Lett. B684 (2010) 173-176, arXiv:0911.3442[math-ph].
- S. Odake and R. Sasaki, “Infinitely many shape invariant discrete quantum mechanical systems and new exceptional orthogonal polynomials related to the Wilson and Askey-Wilson polynomials,” Phys. Lett. B682 (2009) 130-136, arXiv:0909.3668[math-ph].
- S. Odake and R. Sasaki, “Exceptional (Xℓsubscript𝑋ℓX_{\ell}italic_X start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT) (q𝑞qitalic_q)-Racah polynomials,” Prog. Theor. Phys. 125 (2011) 851-870, arXiv:1102.0812[math-ph].
- D. Gómez-Ullate, N. Kamran and R. Milson, “Two-step Darboux transformations and exceptional Laguerre polynomials,” J. Math. Anal. Appl. 387 (2012) 410-418, arXiv:1103.5724[math-ph].
- D. Gómez-Ullate, Y. Grandati and R. Milson, “Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials,” J. Phys. A47 (2014) 015203 (27pp), arXiv:1306.5143[math-ph].
- A. J. Durán, “Exceptional Meixner and Laguerre orthogonal polynomials,” J. Approx. Theory 184 (2014) 176-208, arXiv:1310.4658[math.CA].
- A. J. Durán, “Exceptional Hahn and Jacobi orthogonal polynomials,” J. Approx. Theory 214 (2017) 9-48, arXiv:1510.02579[math.CA].
- S. Odake and R. Sasaki, “Exactly solvable quantum mechanics and infinite families of multi-indexed orthogonal polynomials,” Phys. Lett. B702 (2011) 164-170, arXiv:1105.0508[math-ph]. (Remark: 𝜹~Isuperscript~𝜹I\tilde{\boldsymbol{\delta}}^{\text{I}}over~ start_ARG bold_italic_δ end_ARG start_POSTSUPERSCRIPT I end_POSTSUPERSCRIPT and 𝜹~IIsuperscript~𝜹II\tilde{\boldsymbol{\delta}}^{\text{II}}over~ start_ARG bold_italic_δ end_ARG start_POSTSUPERSCRIPT II end_POSTSUPERSCRIPT in this paper are changed to −𝜹~Isuperscript~𝜹I-\tilde{\boldsymbol{\delta}}^{\text{I}}- over~ start_ARG bold_italic_δ end_ARG start_POSTSUPERSCRIPT I end_POSTSUPERSCRIPT and −𝜹~IIsuperscript~𝜹II-\tilde{\boldsymbol{\delta}}^{\text{II}}- over~ start_ARG bold_italic_δ end_ARG start_POSTSUPERSCRIPT II end_POSTSUPERSCRIPT in the later references.)
- S. Odake and R. Sasaki, “Multi-indexed (q𝑞qitalic_q-)Racah polynomials,” J. Phys. A 45 (2012) 385201 (21pp), arXiv:1203.5868[math-ph].
- S. Odake and R. Sasaki, “Multi-indexed Wilson and Askey-Wilson polynomials,” J. Phys. A46 (2013) 045204 (22pp), arXiv:1207.5584[math-ph].
- S. Odake and R. Sasaki, “Multi-indexed Meixner and Little q𝑞qitalic_q-Jacobi (Laguerre) Polynomials,” J. Phys. A50 (2017) 165204 (23pp), arXiv:1610.09854[math.CA].
- S. Odake, “Exactly Solvable Discrete Quantum Mechanical Systems and Multi-indexed Orthogonal Polynomials of the Continuous Hahn and Meixner-Pollaczek Types,” Prog. Theor. Exp. Phy. 2019 (2019) 123A01 (20pp), arXiv:1907.12218[math-ph].
- S. Odake and R. Sasaki, “Discrete quantum mechanics,” (Topical Review) J. Phys. A44 (2011) 353001 (47pp), arXiv:1104.0473[math-ph]. (Typo in (2.132), c1(η,𝝀)subscript𝑐1𝜂𝝀c_{1}(\eta,\boldsymbol{\lambda})italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_η , bold_italic_λ ) for H : −12⇒−η2⇒12𝜂2-\frac{1}{2}\Rightarrow-\frac{\eta}{2}- divide start_ARG 1 end_ARG start_ARG 2 end_ARG ⇒ - divide start_ARG italic_η end_ARG start_ARG 2 end_ARG.)
- S. Odake and R. Sasaki, “Orthogonal Polynomials from Hermitian Matrices,” J. Math. Phys. 49 (2008) 053503 (43pp), arXiv:0712.4106[math.CA]. (For the dual q𝑞qitalic_q-Meixner and dual q𝑞qitalic_q-Charlier polynomials, see [21].)
- S. Odake and R. Sasaki, “Dual Christoffel transformations,” Prog. Theor. Phys. 126 (2011) 1-34, arXiv:1101.5468[math-ph].
- S. Odake and R. Sasaki, “Markov Chains Generated by Convolutions of Orthogonality Measures,” J. Phys. A: Math. Theor. 55 (2022) 275201 (42pp), arXiv:2106.04082[math.PR].
- S. Odake and R. Sasaki, “Orthogonal Polynomials from Hermitian Matrices II,” J. Math. Phys. 59 (2018) 013504 (42pp), arXiv:1604.00714[math.CA].
- S. Odake and R. Sasaki, “Krein-Adler transformations for shape-invariant potentials and pseudo virtual states,” J. Phys. A46 (2013) 245201 (24pp), arXiv:1212.6595[math-ph].
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.