Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Layer Coherence Origin of Planar Hall Effect: from Charge to Multipole and Valley (2402.17166v3)

Published 27 Feb 2024 in cond-mat.mes-hall

Abstract: We uncover a new origin of the planar Hall effect - as an intrinsic property of layer coherent electrons - that exists even in bilayer and trilayer atomically thin limit. It reforms the existing theories requiring three-dimensional orbital motion, or strong spin-orbit coupling of certain forms, which are absent in van der Waals thin films. We exemplify that the effect can be triggered by strain and interlayer sliding in twisted structures with rich tunability and strong magnitudes. Furthermore, this layer coherence mechanism broadens the conceptual framework to include planar multipole Hall effect, and valley Hall effect induced by in-plane pseudo-magnetic field, outreaching the existing mechanisms. The layer mechanism also provides a new route towards quantized Hall response upon a topological phase transition induced by in-plane magnetic field. These results unveil the unexplored potential of quantum layertronics and moir\'e flat band for planar transport in 2D materials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. Y. Zhang and C. Zhang, Quantized anomalous hall insulator in a nanopatterned two-dimensional electron gas, Phys. Rev. B 84, 085123 (2011).
  2. X. Liu, H.-C. Hsu, and C.-X. Liu, In-plane magnetization-induced quantum anomalous hall effect, Phys. Rev. Lett. 111, 086802 (2013).
  3. V. A. Zyuzin, In-plane hall effect in two-dimensional helical electron systems, Phys. Rev. B 102, 241105(R) (2020).
  4. R. Battilomo, N. Scopigno, and C. Ortix, Anomalous planar hall effect in two-dimensional trigonal crystals, Phys. Rev. Research 3, L012006 (2021).
  5. S. Sun, H. Weng, and X. Dai, Possible quantization and half-quantization in the anomalous hall effect caused by in-plane magnetic field, Phys. Rev. B 106, L241105 (2022).
  6. L. Xiang and J. Wang, Intrinsic in-plane magnetononlinear hall effect in tilted weyl semimetals, Phys. Rev. B 109, 075419 (2024).
  7. Y. Wang, Z.-G. Zhu, and G. Su, Field-induced berry connection and anomalous planar hall effect in tilted weyl semimetals, Phys. Rev. Res. 5, 043156 (2023b).
  8. Y. Gao, S. A. Yang, and Q. Niu, Field induced positional shift of bloch electrons and its dynamical implications, Phys. Rev. Lett. 112, 166601 (2014).
  9. H. Yu, M. Chen, and W. Yao, Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors, Natl. Sci. Rev. 7, 12 (2019).
  10. E. Y. Andrei and A. H. MacDonald, Graphene bilayers with a twist, Nat. Mater. 19, 1265 (2020).
  11. D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).
  12. C. Xiao and Q. Niu, Conserved current of nonconserved quantities, Phys. Rev. B 104, L241411 (2021).
  13. R. Bistritzer and A. H. MacDonald, Moiré bands in twisted double-layer graphene, Proc. Natl. Acad. Sci. U.S.A. 108, 12233 (2011).
  14. O. Antebi, A. Stern, and E. Berg, In-plane orbital magnetization as a probe for symmetry breaking in strained twisted bilayer graphene, Phys. Rev. B 105, 104423 (2022).
  15. H. Zheng, D. Zhai, and W. Yao, Anomalous magneto-optical response and chiral interface of dipolar excitons at twisted valleys, Nano Lett. 22, 5466 (2022).
  16. D. G. Thomas and J. J. Hopfield, A magneto-stark effect and exciton motion in cds, Phys. Rev. 124, 657 (1961).
  17. J. J. Hopfield and D. G. Thomas, Fine structure and magneto-optic effects in the exciton spectrum of cadmium sulfide, Phys. Rev. 122, 35 (1961).
  18. C. Xiao, Y. Ren, and B. Xiong, Adiabatically induced orbital magnetization, Phys. Rev. B 103, 115432 (2021).
  19. Z. Bi, N. F. Q. Yuan, and L. Fu, Designing flat bands by strain, Phys. Rev. B 100, 035448 (2019).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.