Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Direct Detection of Dark Photon Dark Matter with the James Webb Space Telescope (2402.17140v2)

Published 27 Feb 2024 in hep-ph, astro-ph.CO, astro-ph.HE, and hep-ex

Abstract: In this study, we propose an investigation into dark photon dark matter (DPDM) within the infrared frequency band, utilizing highly sensitive infrared light detectors commonly integrated into space telescopes, such as the James Webb Space Telescope (JWST). The presence of DPDM induces electron oscillations in both the reflectors and the interior of the detectors. Consequently, these oscillating electrons can emit monochromatic electromagnetic waves with a frequency almost equivalent to the mass of DPDM. By estimating the signal generated by DPDM inside the detector and comparing with observation data, we establish constraints on the kinetic mixing between the photon and dark photon within the range [10, 500] THz. Despite JWST not being optimized for DPDM searches, our findings reveal constraints comparable to those obtained from the XENON1T experiment in the laboratory, as well as astrophysical constraints from solar emission. Additionally, we propose to modify the configuration of JWST optical elements to focus the DPDM induced signal onto the detector. By employing the stationary phase approximation, we can demonstrate that when the size of the reflector significantly exceeds the wavelength of the electromagnetic wave, the contribution to the electromagnetic wave field at a given position primarily stems from the surface unit perpendicular to the relative position vector. This simplification results in the reduction of electromagnetic wave calculations to ray optics. We show that by rearranging the position of reflectors, JWST can achieve a sensitivity stronger than the existing limits by 1 or 2 orders of magnitude.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. Bob Holdom, “Two U(1)’s and Epsilon Charge Shifts,” Phys. Lett. 166B, 196–198 (1986).
  2. Keith R. Dienes, Christopher F. Kolda,  and John March-Russell, “Kinetic mixing and the supersymmetric gauge hierarchy,” Nucl. Phys. B 492, 104–118 (1997), arXiv:hep-ph/9610479 .
  3. S. A. Abel and B. W. Schofield, “Brane anti-brane kinetic mixing, millicharged particles and SUSY breaking,” Nucl. Phys. B 685, 150–170 (2004), arXiv:hep-th/0311051 .
  4. S. A. Abel, M. D. Goodsell, J. Jaeckel, V. V. Khoze,  and A. Ringwald, “Kinetic Mixing of the Photon with Hidden U(1)s in String Phenomenology,” JHEP 07, 124 (2008a), arXiv:0803.1449 [hep-ph] .
  5. Steven A. Abel, Joerg Jaeckel, Valentin V. Khoze,  and Andreas Ringwald, “Illuminating the Hidden Sector of String Theory by Shining Light through a Magnetic Field,” Phys. Lett. B 666, 66–70 (2008b), arXiv:hep-ph/0608248 .
  6. Mark Goodsell, Joerg Jaeckel, Javier Redondo,  and Andreas Ringwald, “Naturally Light Hidden Photons in LARGE Volume String Compactifications,” JHEP 11, 027 (2009), arXiv:0909.0515 [hep-ph] .
  7. Javier Redondo and Marieke Postma, “Massive hidden photons as lukewarm dark matter,” JCAP 02, 005 (2009), arXiv:0811.0326 [hep-ph] .
  8. Ann E. Nelson and Jakub Scholtz, “Dark Light, Dark Matter and the Misalignment Mechanism,” Phys. Rev. D84, 103501 (2011), arXiv:1105.2812 [hep-ph] .
  9. Paola Arias, Davide Cadamuro, Mark Goodsell, Joerg Jaeckel, Javier Redondo,  and Andreas Ringwald, “WISPy Cold Dark Matter,” JCAP 1206, 013 (2012), arXiv:1201.5902 [hep-ph] .
  10. Peter W. Graham, Jeremy Mardon,  and Surjeet Rajendran, “Vector Dark Matter from Inflationary Fluctuations,” Phys. Rev. D93, 103520 (2016), arXiv:1504.02102 [hep-ph] .
  11. Gonzalo Alonso-Álvarez, Thomas Hugle,  and Joerg Jaeckel, “Misalignment & Co.: (Pseudo-)scalar and vector dark matter with curvature couplings,”   (2019), arXiv:1905.09836 [hep-ph] .
  12. Kazunori Nakayama, “Vector Coherent Oscillation Dark Matter,” JCAP 1910, 019 (2019), arXiv:1907.06243 [hep-ph] .
  13. Kazunori Nakayama, “Constraint on Vector Coherent Oscillation Dark Matter with Kinetic Function,” JCAP 08, 033 (2020), arXiv:2004.10036 [hep-ph] .
  14. Edward W. Kolb and Andrew J. Long, “Completely dark photons from gravitational particle production during the inflationary era,” JHEP 03, 283 (2021), arXiv:2009.03828 [astro-ph.CO] .
  15. Borna Salehian, Mohammad Ali Gorji, Hassan Firouzjahi,  and Shinji Mukohyama, “Vector dark matter production from inflation with symmetry breaking,” Phys. Rev. D 103, 063526 (2021), arXiv:2010.04491 [hep-ph] .
  16. Aqeel Ahmed, Bohdan Grzadkowski,  and Anna Socha, “Gravitational production of vector dark matter,” JHEP 08, 059 (2020), arXiv:2005.01766 [hep-ph] .
  17. Yuichiro Nakai, Ryo Namba,  and Ziwei Wang, “Light Dark Photon Dark Matter from Inflation,” JHEP 12, 170 (2020), arXiv:2004.10743 [hep-ph] .
  18. Kazunori Nakayama and Yong Tang, “Gravitational Production of Hidden Photon Dark Matter in Light of the XENON1T Excess,” Phys. Lett. B 811, 135977 (2020), arXiv:2006.13159 [hep-ph] .
  19. Hassan Firouzjahi, Mohammad Ali Gorji, Shinji Mukohyama,  and Borna Salehian, “Dark photon dark matter from charged inflaton,” JHEP 06, 050 (2021), arXiv:2011.06324 [hep-ph] .
  20. Mar Bastero-Gil, Jose Santiago, Lorenzo Ubaldi,  and Roberto Vega-Morales, “Dark photon dark matter from a rolling inflaton,” JCAP 02, 015 (2022), arXiv:2103.12145 [hep-ph] .
  21. Hassan Firouzjahi, Mohammad Ali Gorji, Shinji Mukohyama,  and Alireza Talebian, “Dark matter from entropy perturbations in curved field space,” Phys. Rev. D 105, 043501 (2022), arXiv:2110.09538 [gr-qc] .
  22. Takanori Sato, Fuminobu Takahashi,  and Masaki Yamada, “Gravitational production of dark photon dark matter with mass generated by the Higgs mechanism,”   (2022), arXiv:2204.11896 [hep-ph] .
  23. Raymond T. Co, Aaron Pierce, Zhengkang Zhang,  and Yue Zhao, “Dark Photon Dark Matter Produced by Axion Oscillations,”   (2018), arXiv:1810.07196 [hep-ph] .
  24. Jeff A. Dror, Keisuke Harigaya,  and Vijay Narayan, “Parametric Resonance Production of Ultralight Vector Dark Matter,”  (2018), arXiv:1810.07195 [hep-ph] .
  25. Mar Bastero-Gil, Jose Santiago, Lorenzo Ubaldi,  and Roberto Vega-Morales, “Vector dark matter production at the end of inflation,”  (2018), arXiv:1810.07208 [hep-ph] .
  26. Prateek Agrawal, Naoya Kitajima, Matthew Reece, Toyokazu Sekiguchi,  and Fuminobu Takahashi, “Relic Abundance of Dark Photon Dark Matter,”  (2018), arXiv:1810.07188 [hep-ph] .
  27. Raymond T. Co, Keisuke Harigaya,  and Aaron Pierce, “Gravitational waves and dark photon dark matter from axion rotations,” JHEP 12, 099 (2021), arXiv:2104.02077 [hep-ph] .
  28. Kazunori Nakayama and Wen Yin, “Hidden photon and axion dark matter from symmetry breaking,” JHEP 10, 026 (2021), arXiv:2105.14549 [hep-ph] .
  29. Andrew J. Long and Lian-Tao Wang, “Dark Photon Dark Matter from a Network of Cosmic Strings,”  (2019), arXiv:1901.03312 [hep-ph] .
  30. Marco Fabbrichesi, Emidio Gabrielli,  and Gaia Lanfranchi, “The Dark Photon,”   (2020), 10.1007/978-3-030-62519-1, arXiv:2005.01515 [hep-ph] .
  31. Andrea Caputo, Alexander J. Millar, Ciaran A. J. O’Hare,  and Edoardo Vitagliano, “Dark photon limits: A handbook,” Phys. Rev. D 104, 095029 (2021), arXiv:2105.04565 [hep-ph] .
  32. S. De Panfilis, A. C. Melissinos, B. E. Moskowitz, J. T. Rogers, Y. K. Semertzidis, Walter Wuensch, H. J. Halama, A. G. Prodell, W. B. Fowler,  and F. A. Nezrick, “Limits on the Abundance and Coupling of Cosmic Axions at 4.5-Microev ¡ m(a) ¡ 5.0-Microev,” Phys. Rev. Lett. 59, 839 (1987).
  33. Walter Wuensch, S. De Panfilis-Wuensch, Y. K. Semertzidis, J. T. Rogers, A. C. Melissinos, H. J. Halama, B. E. Moskowitz, A. G. Prodell, W. B. Fowler,  and F. A. Nezrick, “Results of a Laboratory Search for Cosmic Axions and Other Weakly Coupled Light Particles,” Phys. Rev. D40, 3153 (1989).
  34. C. Hagmann, P. Sikivie, N. S. Sullivan,  and D. B. Tanner, “Results from a search for cosmic axions,” Phys. Rev. D42, 1297–1300 (1990).
  35. Stephen J. Asztalos et al. (ADMX), “Large scale microwave cavity search for dark matter axions,” Phys. Rev. D64, 092003 (2001).
  36. S. J. Asztalos et al. (ADMX), “A SQUID-based microwave cavity search for dark-matter axions,” Phys. Rev. Lett. 104, 041301 (2010), arXiv:0910.5914 [astro-ph.CO] .
  37. Le Hoang Nguyen, Andrei Lobanov,  and Dieter Horns, “First results from the WISPDMX radio frequency cavity searches for hidden photon dark matter,” JCAP 1910, 014 (2019), arXiv:1907.12449 [hep-ex] .
  38. Dieter Horns, Joerg Jaeckel, Axel Lindner, Andrei Lobanov, Javier Redondo,  and Andreas Ringwald, “Searching for WISPy Cold Dark Matter with a Dish Antenna,” JCAP 04, 016 (2013), arXiv:1212.2970 [hep-ph] .
  39. Joerg Jaeckel and Javier Redondo, ‘‘An antenna for directional detection of WISPy dark matter,” JCAP 11, 016 (2013a), arXiv:1307.7181 [hep-ph] .
  40. Joerg Jaeckel and Stefan Knirck, “Directional Resolution of Dish Antenna Experiments to Search for WISPy Dark Matter,” JCAP 01, 005 (2016), arXiv:1509.00371 [hep-ph] .
  41. Stefan Knirck, Takayuki Yamazaki, Yoshiki Okesaku, Shoji Asai, Toshitaka Idehara,  and Toshiaki Inada, “First results from a hidden photon dark matter search in the meV sector using a plane-parabolic mirror system,” JCAP 1811, 031 (2018), arXiv:1806.05120 [hep-ex] .
  42. Graciela B. Gelmini, Alexander J. Millar, Volodymyr Takhistov,  and Edoardo Vitagliano, “Probing dark photons with plasma haloscopes,” Phys. Rev. D 102, 043003 (2020), arXiv:2006.06836 [hep-ph] .
  43. Samuel D. McDermott and Samuel J. Witte, “Cosmological evolution of light dark photon dark matter,” Phys. Rev. D101, 063030 (2020), arXiv:1911.05086 [hep-ph] .
  44. Haipeng An, Fa Peng Huang, Jia Liu,  and Wei Xue, “Radio-frequency Dark Photon Dark Matter across the Sun,” Phys. Rev. Lett. 126, 181102 (2021), arXiv:2010.15836 [hep-ph] .
  45. Haipeng An, Xingyao Chen, Shuailiang Ge, Jia Liu,  and Yan Luo, “Searching for Ultralight Dark Matter Conversion in Solar Corona using LOFAR Data,”   (2023a), arXiv:2301.03622 [hep-ph] .
  46. Haipeng An, Shuailiang Ge,  and Jia Liu, “Solar Radio Emissions and Ultralight Dark Matter,” Universe 9, 142 (2023b), arXiv:2304.01056 [hep-ph] .
  47. Joerg Jaeckel and Javier Redondo, “Resonant to broadband searches for cold dark matter consisting of weakly interacting slim particles,” Phys. Rev. D 88, 115002 (2013b), arXiv:1308.1103 [hep-ph] .
  48. Jun’ya Suzuki, Yoshizumi Inoue, Tomoki Horie,  and Makoto Minowa, “Hidden photon CDM search at Tokyo,” in 11th Patras Workshop on Axions, WIMPs and WISPs (2015) pp. 145–148, arXiv:1509.00785 [hep-ex] .
  49. J. Suzuki, T. Horie, Y. Inoue,  and M. Minowa, “Experimental Search for Hidden Photon CDM in the eV mass range with a Dish Antenna,” JCAP 09, 042 (2015b), arXiv:1504.00118 [hep-ex] .
  50. Nozomu Tomita, Shugo Oguri, Yoshizumi Inoue, Makoto Minowa, Taketo Nagasaki, Jun’ya Suzuki,  and Osamu Tajima, “Search for hidden-photon cold dark matter using a K-band cryogenic receiver,” JCAP 09, 012 (2020), arXiv:2006.02828 [hep-ex] .
  51. Benjamin Godfrey et al., “Search for dark photon dark matter: Dark E field radio pilot experiment,” Phys. Rev. D 104, 012013 (2021), arXiv:2101.02805 [physics.ins-det] .
  52. Pierre Brun, Laurent Chevalier,  and Christophe Flouzat, “Direct Searches for Hidden-Photon Dark Matter with the SHUKET Experiment,” Phys. Rev. Lett. 122, 201801 (2019), arXiv:1905.05579 [hep-ex] .
  53. A. Andrianavalomahefa et al. (FUNK Experiment), “Limits from the Funk Experiment on the Mixing Strength of Hidden-Photon Dark Matter in the Visible and Near-Ultraviolet Wavelength Range,” Phys. Rev. D 102, 042001 (2020), arXiv:2003.13144 [astro-ph.CO] .
  54. Fayez Bajjali et al., “First results from BRASS-p broadband searches for hidden photon dark matter,” JCAP 08, 077 (2023), arXiv:2306.05934 [hep-ex] .
  55. Jonathan P. Gardner et al., “The James Webb Space Telescope,” Space Sci. Rev. 123, 485 (2006), arXiv:astro-ph/0606175 .
  56. Haipeng An, Shuailiang Ge, Wen-Qing Guo, Xiaoyuan Huang, Jia Liu,  and Zhiyao Lu, “Direct detection of dark photon dark matter using radio telescopes,” Phys. Rev. Lett. 130, 181001 (2023c).
  57. N. Bleistein and R.A. Handelsman, Asymptotic Expansions of Integrals, Dover Books on Mathematics Series (Dover Publications, 1986).
  58. A. K. Drukier, Katherine Freese,  and D. N. Spergel, “Detecting Cold Dark Matter Candidates,” Phys. Rev. D 33, 3495–3508 (1986).
  59. N. Wyn Evans, Ciaran A. J. O’Hare,  and Christopher McCabe, “Refinement of the standard halo model for dark matter searches in light of the Gaia Sausage,” Phys. Rev. D 99, 023012 (2019), arXiv:1810.11468 [astro-ph.GA] .
  60. Paul Lightsey, Charles Atkinson, Mark Clampin,  and Lee Feinberg, “James webb space telescope: Large deployable cryogenic telescope in space,” Optical Engineering 51, 1003– (2012).
  61. Paul A. Lightsey, J. Scott Knight,  and Gary Golnik, “Status of the optical performance for the James Webb Space Telescope,” in Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9143, edited by Jr. Oschmann, Jacobus M., Mark Clampin, Giovanni G. Fazio,  and Howard A. MacEwen (2014) p. 914304.
  62. Glen Cowan, Kyle Cranmer, Eilam Gross,  and Ofer Vitells, “Asymptotic formulae for likelihood-based tests of new physics,” The European Physical Journal C 71 (2011), 10.1140/epjc/s10052-011-1554-0.
  63. Shao-Ping Li and Xun-Jie Xu, ‘‘Production rates of dark photons and z′superscript𝑧′z^{\prime}italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT in the sun and stellar cooling bounds,”  (2023), arXiv:2304.12907 [hep-ph] .
  64. E. Aprile et al. (XENON), “Emission of single and few electrons in XENON1T and limits on light dark matter,” Phys. Rev. D 106, 022001 (2022), arXiv:2112.12116 [hep-ex] .
  65. Jeff Chiles et al., “New Constraints on Dark Photon Dark Matter with Superconducting Nanowire Detectors in an Optical Haloscope,” Phys. Rev. Lett. 128, 231802 (2022), arXiv:2110.01582 [hep-ex] .
  66. Laura Manenti et al., “Search for dark photons using a multilayer dielectric haloscope equipped with a single-photon avalanche diode,” Phys. Rev. D 105, 052010 (2022), arXiv:2110.10497 [hep-ex] .
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 5 tweets and received 16 likes.

Upgrade to Pro to view all of the tweets about this paper: