2000 character limit reached
NeSy is alive and well: A LLM-driven symbolic approach for better code comment data generation and classification (2402.16910v2)
Published 25 Feb 2024 in cs.SE and cs.AI
Abstract: We present a neuro-symbolic (NeSy) workflow combining a symbolic-based learning technique with a LLM agent to generate synthetic data for code comment classification in the C programming language. We also show how generating controlled synthetic data using this workflow fixes some of the notable weaknesses of LLM-based generation and increases the performance of classical machine learning models on the code comment classification task. Our best model, a Neural Network, achieves a Macro-F1 score of 91.412% with an increase of 1.033% after data augmentation.
- Zheng, Z., Ning, K., Wang, Y., Zhang, J., Zheng, D., Ye, M., Chen, J.: A survey of large language models for code: Evolution, benchmarking, and future trends. arXiv preprint arXiv:2311.10372 (2023) Gholami and Omar [2023] Gholami, S., Omar, M.: Does synthetic data make large language models more efficient? arXiv preprint arXiv:2310.07830 (2023) Muennighoff et al. [2024] Muennighoff, N., Rush, A., Barak, B., Le Scao, T., Tazi, N., Piktus, A., Pyysalo, S., Wolf, T., Raffel, C.A.: Scaling data-constrained language models. Advances in Neural Information Processing Systems 36 (2024) Van [2023] Van, H.: Mitigating data scarcity for large language models. arXiv preprint arXiv:2302.01806 (2023) Majumdar et al. [2023] Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das, P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview of the information retrieval in software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023) Abi Akl [2023] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Gholami, S., Omar, M.: Does synthetic data make large language models more efficient? arXiv preprint arXiv:2310.07830 (2023) Muennighoff et al. [2024] Muennighoff, N., Rush, A., Barak, B., Le Scao, T., Tazi, N., Piktus, A., Pyysalo, S., Wolf, T., Raffel, C.A.: Scaling data-constrained language models. Advances in Neural Information Processing Systems 36 (2024) Van [2023] Van, H.: Mitigating data scarcity for large language models. arXiv preprint arXiv:2302.01806 (2023) Majumdar et al. [2023] Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das, P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview of the information retrieval in software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023) Abi Akl [2023] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Muennighoff, N., Rush, A., Barak, B., Le Scao, T., Tazi, N., Piktus, A., Pyysalo, S., Wolf, T., Raffel, C.A.: Scaling data-constrained language models. Advances in Neural Information Processing Systems 36 (2024) Van [2023] Van, H.: Mitigating data scarcity for large language models. arXiv preprint arXiv:2302.01806 (2023) Majumdar et al. [2023] Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das, P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview of the information retrieval in software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023) Abi Akl [2023] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Van, H.: Mitigating data scarcity for large language models. arXiv preprint arXiv:2302.01806 (2023) Majumdar et al. [2023] Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das, P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview of the information retrieval in software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023) Abi Akl [2023] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das, P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview of the information retrieval in software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023) Abi Akl [2023] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Gholami, S., Omar, M.: Does synthetic data make large language models more efficient? arXiv preprint arXiv:2310.07830 (2023) Muennighoff et al. [2024] Muennighoff, N., Rush, A., Barak, B., Le Scao, T., Tazi, N., Piktus, A., Pyysalo, S., Wolf, T., Raffel, C.A.: Scaling data-constrained language models. Advances in Neural Information Processing Systems 36 (2024) Van [2023] Van, H.: Mitigating data scarcity for large language models. arXiv preprint arXiv:2302.01806 (2023) Majumdar et al. [2023] Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das, P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview of the information retrieval in software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023) Abi Akl [2023] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Muennighoff, N., Rush, A., Barak, B., Le Scao, T., Tazi, N., Piktus, A., Pyysalo, S., Wolf, T., Raffel, C.A.: Scaling data-constrained language models. Advances in Neural Information Processing Systems 36 (2024) Van [2023] Van, H.: Mitigating data scarcity for large language models. arXiv preprint arXiv:2302.01806 (2023) Majumdar et al. [2023] Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das, P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview of the information retrieval in software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023) Abi Akl [2023] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Van, H.: Mitigating data scarcity for large language models. arXiv preprint arXiv:2302.01806 (2023) Majumdar et al. [2023] Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das, P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview of the information retrieval in software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023) Abi Akl [2023] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das, P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview of the information retrieval in software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023) Abi Akl [2023] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Muennighoff, N., Rush, A., Barak, B., Le Scao, T., Tazi, N., Piktus, A., Pyysalo, S., Wolf, T., Raffel, C.A.: Scaling data-constrained language models. Advances in Neural Information Processing Systems 36 (2024) Van [2023] Van, H.: Mitigating data scarcity for large language models. arXiv preprint arXiv:2302.01806 (2023) Majumdar et al. [2023] Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das, P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview of the information retrieval in software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023) Abi Akl [2023] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Van, H.: Mitigating data scarcity for large language models. arXiv preprint arXiv:2302.01806 (2023) Majumdar et al. [2023] Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das, P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview of the information retrieval in software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023) Abi Akl [2023] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das, P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview of the information retrieval in software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023) Abi Akl [2023] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Van, H.: Mitigating data scarcity for large language models. arXiv preprint arXiv:2302.01806 (2023) Majumdar et al. [2023] Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das, P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview of the information retrieval in software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023) Abi Akl [2023] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das, P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview of the information retrieval in software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023) Abi Akl [2023] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Majumdar, S., Paul, S., Paul, D., Bandyopadhyay, A., Chattopadhyay, S., Das, P.P., Clough, P.D., Majumder, P.: Generative ai for software metadata: Overview of the information retrieval in software engineering track at fire 2023. arXiv preprint arXiv:2311.03374 (2023) Abi Akl [2023] Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Abi Akl, H.: A ml-llm pairing for better code comment classification. In: FIRE (Forum for Information Retrieval Evaluation) 2023 (2023) d’Avila Garcez and Lamb [2020] Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Garcez, A., Lamb, L.C.: Neurosymbolic ai: the 3rd wave. arXiv e-prints, 2012 (2020) Núñez-Molina et al. [2023] Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Núñez-Molina, C., Mesejo, P., Fernández-Olivares, J.: Nesig: A neuro-symbolic method for learning to generate planning problems. arXiv preprint arXiv:2301.10280 (2023) Karth et al. [2021] Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Karth, I., Aytemiz, B., Mawhorter, R., Smith, A.M.: Neurosymbolic map generation with vq-vae and wfc. In: Proceedings of the 16th International Conference on the Foundations of Digital Games, pp. 1–6 (2021) Prasad et al. [2023] Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal, A., Bansal, M., Khot, T.: Adapt: As-needed decomposition and planning with language models. arXiv preprint arXiv:2311.05772 (2023) Hou et al. [2023] Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Hou, B., Liu, Y., Qian, K., Andreas, J., Chang, S., Zhang, Y.: Decomposing uncertainty for large language models through input clarification ensembling. arXiv preprint arXiv:2311.08718 (2023) Tarasov and Shridhar [2024] Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Tarasov, D., Shridhar, K.: Distilling llms’ decomposition abilities into compact language models. arXiv preprint arXiv:2402.01812 (2024) Lyre [2024] Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Lyre, H.: ” understanding ai”: Semantic grounding in large language models. arXiv preprint arXiv:2402.10992 (2024) Turney [2014] Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Turney, P.D.: Semantic composition and decomposition: From recognition to generation. arXiv preprint arXiv:1405.7908 (2014) Bloore et al. [2022] Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Bloore, D.A., Gauriau, R., Decker, A.L., Oppenheim, J.: Semantic decomposition improves learning of large language models on ehr data. arXiv preprint arXiv:2212.06040 (2022) Jhamtani et al. [2023] Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Jhamtani, H., Fang, H., Xia, P., Levy, E., Andreas, J., Van Durme, B.: Natural language decomposition and interpretation of complex utterances. arXiv preprint arXiv:2305.08677 (2023) Drozdov et al. [2022] Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., Zhou, D.: Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003 (2022) Patel et al. [2022] Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Patel, P., Mishra, S., Parmar, M., Baral, C.: Is a question decomposition unit all we need? arXiv preprint arXiv:2205.12538 (2022) Mekala et al. [2022] Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Mekala, D., Wolfe, J., Roy, S.: Zerotop: Zero-shot task-oriented semantic parsing using large language models. arXiv preprint arXiv:2212.10815 (2022) Yang et al. [2022] Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Yang, J., Jiang, H., Yin, Q., Zhang, D., Yin, B., Yang, D.: Seqzero: Few-shot compositional semantic parsing with sequential prompts and zero-shot models. arXiv preprint arXiv:2205.07381 (2022) Lu et al. [2023] Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Lu, Y., Shen, M., Wang, H., Wang, X., Rechem, C., Wei, W.: Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062 (2023) Bauer et al. [2024] Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Bauer, A., Trapp, S., Stenger, M., Leppich, R., Kounev, S., Leznik, M., Chard, K., Foster, I.: Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524 (2024) Li et al. [2023] Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Li, Z., Zhu, H., Lu, Z., Yin, M.: Synthetic data generation with large language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849 (2023) Riemer [2015] Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Riemer, N.: The Routledge Handbook of Semantics, (2015) Klemens [2014] Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Klemens, B.: 21st Century C: C Tips from the New School, (2014) Chawla et al. [2002] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
- Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research 16, 321–357 (2002)
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.