Papers
Topics
Authors
Recent
Search
2000 character limit reached

Entanglement-breaking channels are a quantum memory resource

Published 26 Feb 2024 in quant-ph | (2402.16789v1)

Abstract: Entanglement-breaking channels (equivalently, measure-and-prepare channels) are an important class of quantum operations noted for their ability to destroy multipartite spatial quantum correlations. Inspired by this property, they have also been employed in defining notions of "classical memory", under the assumption that such channels effectively act as a classical resource. We show that, in a single-system multi-time scenario, entanglement-breaking channels are still a quantum memory resource: a qudit going through an entanglement-breaking channel cannot be simulated by a classical system of same dimension. We provide explicit examples of memory-based output generation tasks where entanglement-breaking channels outperform classical memories of the same size. Our results imply that entanglement-breaking channels cannot be generally employed to characterize classical memory effects in temporal scenarios without additional assumptions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. D. Rosset, F. Buscemi, and Y.-C. Liang, Resource theory of quantum memories and their faithful verification with minimal assumptions, Phys. Rev. X 8, 021033 (2018).
  2. C. Giarmatzi and F. Costa, Witnessing quantum memory in non-Markovian processes, Quantum 5, 440 (2021).
  3. T. Fritz, Quantum correlations in the temporal Clauser–Horne–Shimony–Holt (CHSH) scenario, New J. Phys. 12, 083055 (2010).
  4. C. Budroni, G. Fagundes, and M. Kleinmann, Memory cost of temporal correlations, New Journal of Physics 21, 093018 (2019).
  5. C. Budroni, G. Vitagliano, and M. P. Woods, Ticking-clock performance enhanced by nonclassical temporal correlations, Phys. Rev. Res. 3, 033051 (2021).
  6. P. Abiuso, Verification of continuous-variable quantum memories, Quantum Science and Technology 9, 01LT02 (2023).
  7. G. Chiribella, G. M. D’Ariano, and P. Perinotti, Transforming quantum operations: Quantum supermaps, Europhysics Letters 83, 30004 (2008).
  8. C. Bäcker, K. Beyer, and W. T. Strunz, Local disclosure of quantum memory in non-Markovian dynamics, Phys. Rev. Lett. 132, 060402 (2024).
  9. M. Horodecki, P. W. Shor, and M. B. Ruskai, Entanglement breaking channels, Reviews in Mathematical Physics 15, 629 (2003).
  10. J. S. Ivan, K. K. Sabapathy, and R. Simon, Nonclassicality breaking is the same as entanglement breaking for bosonic gaussian channels, Phys. Rev. A 88, 032302 (2013).
  11. A. S. Holevo, Quantum coding theorems, Russian Mathematical Surveys 53, 1295 (1998).
  12. A. Jamiołkowski, Linear transformations which preserve trace and positive semidefiniteness of operators, Rep. Math. Phys. 3, 275 (1972).
  13. M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Its Appl. 10, 285 (1975).
  14. L. B. Vieira and C. Budroni, Temporal correlations in the simplest measurement sequences, Quantum 6, 623 (2022).
  15. L. Clemente and J. Kofler, No fine theorem for macrorealism: Limitations of the Leggett-Garg inequality, Phys. Rev. Lett. 116, 150401 (2016).
  16. C. Spee, C. Budroni, and O. Gühne, Simulating extremal temporal correlations, New Journal of Physics 22, 103037 (2020).
  17. M. Weilenmann, C. Budroni, and M. Navascues, Optimisation of time-ordered processes in the finite and asymptotic regime,   (2023), arXiv:2302.02918 [quant-ph] .
  18. J. A. Tropp, Complex equiangular tight frames, in Wavelets XI, Vol. 5914, edited by M. Papadakis, A. F. Laine, and M. A. Unser, International Society for Optics and Photonics (SPIE, 2005) p. 591401.
  19. L. Welch, Lower bounds on the maximum cross correlation of signals (corresp.), IEEE Transactions on Information Theory 20, 397 (1974).
  20. S. Wiesner, Conjugate coding, SIGACT News 15, 78–88 (1983).
  21. N. Miklin, J. J. Borkała, and M. Pawłowski, Semi-device-independent self-testing of unsharp measurements, Phys. Rev. Res. 2, 033014 (2020).
  22. F. C. Binder, J. Thompson, and M. Gu, Practical unitary simulator for non-Markovian complex processes, Phys. Rev. Lett. 120, 240502 (2018).
  23. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv  (2017), arXiv:1412.6980 [cs.LG] .
Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.