Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Quantum intersection numbers and the Gromov-Witten invariants of $\mathbb{CP}^1$ (2402.16464v1)

Published 26 Feb 2024 in math.AG, math-ph, and math.MP

Abstract: The notion of a quantum tau-function for a natural quantization of the KdV hierarchy was introduced in a work of Dubrovin, Gu\'er\'e, Rossi, and the second author. A certain natural choice of a quantum tau-function was then described by the first author, the coefficients of the logarithm of this series are called the quantum intersection numbers. Because of the Kontsevich-Witten theorem, a part of the quantum intersection numbers coincides with the classical intersection numbers of psi-classes on the moduli spaces of stable algebraic curves. In this paper, we relate the quantum intersection numbers to the stationary relative Gromov-Witten invariants of $(\mathbb{CP}1,0,\infty)$ with an insertion of a Hodge class. Using the Okounkov-Pandharipande approach to such invariants (with the trivial Hodge class) through the infinite wedge formalism, we then give a short proof of an explicit formula for the ``purely quantum'' part of the quantum intersection numbers, found by the first author, which in particular relates these numbers to the one-part double Hurwitz numbers.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: