2000 character limit reached
Quantum Decoherence effects on precision measurements at DUNE and T2HK (2402.16395v2)
Published 26 Feb 2024 in hep-ph and hep-ex
Abstract: We investigate the potential impact of neutrino quantum decoherence on the precision measurements of standard neutrino oscillation parameters in the DUNE and T2HK experiments. We show that the measurement of $\delta_\text{CP}$, $\sin2\theta_{13}$ and $\sin2\theta_{23}$ is stronger effected in DUNE than in T2HK. On the other hand, DUNE would have a better sensitivity than T2HK to observe decoherence effects. By performing a combined analysis of DUNE and T2HK we show that a robust measurement of standard parameters would be possible, which is not guaranteed with DUNE data alone.
- G. Lindblad, “Completely positive maps and entropy inequalities,” Commun. Math. Phys. 40 no. 2, (1975) 147–151.
- V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely Positive Dynamical Semigroups of N Level Systems,” J. Math. Phys. 17 (1976) 821.
- G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, and A. Palazzo, “Probing non-standard decoherence effects with solar and KamLAND neutrinos,” Phys. Rev. D 76 (2007) 033006, arXiv:0704.2568 [hep-ph].
- P. C. de Holanda, “Solar Neutrino Limits on Decoherence,” JCAP 03 (2020) 012, arXiv:1909.09504 [hep-ph].
- E. Lisi, A. Marrone, and D. Montanino, “Probing possible decoherence effects in atmospheric neutrino oscillations,” Phys. Rev. Lett. 85 (2000) 1166–1169, arXiv:hep-ph/0002053.
- V. D’Esposito and G. Gubitosi, “Constraints on quantum spacetime-induced decoherence from neutrino oscillations,” arXiv:2306.14778 [hep-ph].
- G. Barenboim and N. E. Mavromatos, “CPT violating decoherence and LSND: A Possible window to Planck scale physics,” JHEP 01 (2005) 034, arXiv:hep-ph/0404014.
- G. Barenboim, N. E. Mavromatos, S. Sarkar, and A. Waldron-Lauda, “Quantum decoherence and neutrino data,” Nucl. Phys. B 758 (2006) 90–111, arXiv:hep-ph/0603028.
- F. Benatti and R. Floreanini, “Massless neutrino oscillations,” Phys. Rev. D 64 (2001) 085015, arXiv:hep-ph/0105303.
- N. E. Mavromatos and S. Sarkar, “Probing Models of Quantum Decoherence in Particle Physics and Cosmology,” 12, 2006. arXiv:hep-ph/0612193.
- IceCube Collaboration, R. Abbasi et al., “Searching for Decoherence from Quantum Gravity at the IceCube South Pole Neutrino Observatory,” arXiv:2308.00105 [hep-ex].
- P. Coloma, J. Lopez-Pavon, I. Martinez-Soler, and H. Nunokawa, “Decoherence in Neutrino Propagation Through Matter, and Bounds from IceCube/DeepCore,” Eur. Phys. J. C 78 no. 8, (2018) 614, arXiv:1803.04438 [hep-ph].
- R. L. N. de Oliveira, M. M. Guzzo, and P. C. de Holanda, “Quantum Dissipation and CP𝐶𝑃C\!Pitalic_C italic_P Violation in MINOS,” Phys. Rev. D 89 no. 5, (2014) 053002, arXiv:1401.0033 [hep-ph].
- G. Balieiro Gomes, M. M. Guzzo, P. C. de Holanda, and R. L. N. Oliveira, “Parameter Limits for Neutrino Oscillation with Decoherence in KamLAND,” Phys. Rev. D 95 no. 11, (2017) 113005, arXiv:1603.04126 [hep-ph].
- A. L. G. Gomes, R. A. Gomes, and O. L. G. Peres, “Quantum decoherence and relaxation in neutrinos using long-baseline data,” arXiv:2001.09250 [hep-ph].
- J. A. B. Coelho, W. A. Mann, and S. S. Bashar, “Nonmaximal θ23subscript𝜃23\theta_{23}italic_θ start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT mixing at NOvA from neutrino decoherence,” Phys. Rev. Lett. 118 no. 22, (2017) 221801, arXiv:1702.04738 [hep-ph].
- G. Balieiro Gomes, D. V. Forero, M. M. Guzzo, P. C. De Holanda, and R. L. N. Oliveira, “Quantum Decoherence Effects in Neutrino Oscillations at DUNE,” Phys. Rev. D 100 no. 5, (2019) 055023, arXiv:1805.09818 [hep-ph].
- J. A. Carpio, E. Massoni, and A. M. Gago, “Testing quantum decoherence at DUNE,” Phys. Rev. D 100 no. 1, (2019) 015035, arXiv:1811.07923 [hep-ph].
- JUNO Collaboration, J. Wang et al., “Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment,” JHEP 06 (2022) 062, arXiv:2112.14450 [hep-ex].
- V. De Romeri, C. Giunti, T. Stuttard, and C. A. Ternes, “Neutrino oscillation bounds on quantum decoherence,” JHEP 09 (2023) 097, arXiv:2306.14699 [hep-ph].
- Y. Farzan and T. Schwetz, “A decoherence explanation of the gallium neutrino anomaly,” SciPost Phys. 15 no. 4, (2023) 172, arXiv:2306.09422 [hep-ph].
- C. Giunti and C. A. Ternes, “Confronting solutions of the Gallium Anomaly with reactor rate data,” Phys. Lett. B 849 (2024) 138436, arXiv:2312.00565 [hep-ph].
- C. Giunti, Y. F. Li, C. A. Ternes, and Z. Xin, “Reactor antineutrino anomaly in light of recent flux model refinements,” Phys. Lett. B 829 (2022) 137054, arXiv:2110.06820 [hep-ph].
- C. Giunti, Y. F. Li, C. A. Ternes, O. Tyagi, and Z. Xin, “Gallium Anomaly: critical view from the global picture of ν𝜈\nuitalic_νe𝑒{}_{e}start_FLOATSUBSCRIPT italic_e end_FLOATSUBSCRIPT and ν¯esubscript¯𝜈𝑒{\overline{\nu}}_{e}over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT disappearance,” JHEP 10 (2022) 164, arXiv:2209.00916 [hep-ph].
- J. C. Carrasco, F. N. Díaz, and A. M. Gago, “Probing CPT breaking induced by quantum decoherence at DUNE,” Phys. Rev. D 99 no. 7, (2019) 075022, arXiv:1811.04982 [hep-ph].
- J. C. Carrasco-Martínez, F. N. Díaz, and A. M. Gago, “Uncovering the Majorana nature through a precision measurement of the CP phase,” Phys. Rev. D 105 no. 3, (2022) 035010, arXiv:2011.01254 [hep-ph].
- A. Capolupo, S. M. Giampaolo, and G. Lambiase, “Decoherence in neutrino oscillations, neutrino nature and CPT violation,” Phys. Lett. B 792 (2019) 298–303, arXiv:1807.07823 [hep-ph].
- G. Lindblad, “On the Generators of Quantum Dynamical Semigroups,” Commun. Math. Phys. 48 (1976) 119.
- A. M. Gago, E. M. Santos, W. J. C. Teves, and R. Zukanovich Funchal, “A Study on quantum decoherence phenomena with three generations of neutrinos,” arXiv:hep-ph/0208166.
- F. Benatti and R. Floreanini, “Open system approach to neutrino oscillations,” JHEP 02 (2000) 032, arXiv:hep-ph/0002221.
- T. Stuttard and M. Jensen, “Neutrino decoherence from quantum gravitational stochastic perturbations,” Phys. Rev. D 102 no. 11, (2020) 115003, arXiv:2007.00068 [hep-ph].
- R. L. N. Oliveira and M. M. Guzzo, “Quantum dissipation in vacuum neutrino oscillation,” Eur. Phys. J. C 69 (2010) 493–502.
- L. Buoninfante, A. Capolupo, S. M. Giampaolo, and G. Lambiase, “Revealing neutrino nature and CPT𝐶𝑃𝑇CPTitalic_C italic_P italic_T violation with decoherence effects,” Eur. Phys. J. C 80 no. 11, (2020) 1009, arXiv:2001.07580 [hep-ph].
- F. Benatti and H. Narnhofer, “ENTROPY BEHAVIOR UNDER COMPLETELY POSITIVE MAPS,” Lett. Math. Phys. 15 (1988) 325.
- C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics. 2007.
- J. Carpio, E. Massoni, and A. M. Gago, “Revisiting quantum decoherence for neutrino oscillations in matter with constant density,” Phys. Rev. D 97 no. 11, (2018) 115017, arXiv:1711.03680 [hep-ph].
- P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, C. A. Ternes, M. Tórtola, and J. W. F. Valle, “2020 global reassessment of the neutrino oscillation picture,” JHEP 02 (2021) 071, arXiv:2006.11237 [hep-ph].
- Hyper-Kamiokande Proto- Collaboration, K. Abe et al., “Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande,” PTEP 2015 (2015) 053C02, arXiv:1502.05199 [hep-ex].
- DUNE Collaboration, B. Abi et al., “Experiment Simulation Configurations Approximating DUNE TDR,” arXiv:2103.04797 [hep-ex].
- DUNE Collaboration, B. Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE,” JINST 15 no. 08, (2020) T08008, arXiv:2002.02967 [physics.ins-det].
- DUNE Collaboration, B. Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics,” arXiv:2002.03005 [hep-ex].
- DUNE Collaboration, B. Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume III: DUNE Far Detector Technical Coordination,” JINST 15 no. 08, (2020) T08009, arXiv:2002.03008 [physics.ins-det].
- DUNE Collaboration, B. Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV: Far Detector Single-phase Technology,” JINST 15 no. 08, (2020) T08010, arXiv:2002.03010 [physics.ins-det].
- P. Huber, M. Lindner, and W. Winter, “Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator),” Comput. Phys. Commun. 167 (2005) 195, arXiv:hep-ph/0407333 [hep-ph].
- P. Huber, J. Kopp, M. Lindner, M. Rolinec, and W. Winter, “New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator,” Comput. Phys. Commun. 177 (2007) 432–438, arXiv:hep-ph/0701187 [hep-ph].
- “Oscillation physics with hyper-kamiokande,” 2022. https://agenda.infn.it/event/30418/contributions/170639/attachments/95720/131789/NOW2022_ZhenxiongXie_v2.pdf.
- “Hyper-kamiokande lbl physics sensitivity,” 2023. https://indico.cern.ch/event/1216905/contributions/5451854/attachments/2702796/4691430/HK_LBL_Sensitivity_NuFACT.pdf.
- “Pre-defined experiment files.” https://mpi-hd.mpg.de/personalhomes/globes/glb/T2HK.html.
- T2K Collaboration, K. Abe et al., “Measurements of neutrino oscillation parameters from the T2K experiment using 3.6×10213.6superscript10213.6\times 10^{21}3.6 × 10 start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT protons on target,” Eur. Phys. J. C 83 no. 9, (2023) 782, arXiv:2303.03222 [hep-ex].
- DUNE Collaboration, T. Alion et al., “Experiment Simulation Configurations Used in DUNE CDR,” arXiv:1606.09550 [physics.ins-det].
- T2K Collaboration, K. Abe et al., “Updated T2K measurements of muon neutrino and antineutrino disappearance using 3.6×1021 protons on target,” Phys. Rev. D 108 no. 7, (2023) 072011, arXiv:2305.09916 [hep-ex].
- NOvA Collaboration, M. A. Acero et al., “Improved measurement of neutrino oscillation parameters by the NOvA experiment,” Phys. Rev. D 106 no. 3, (2022) 032004, arXiv:2108.08219 [hep-ex].
- NOvA, R. Group Collaboration, M. A. Acero et al., “Expanding neutrino oscillation parameter measurements in NOvA using a Bayesian approach,” arXiv:2311.07835 [hep-ex].
- H. Nunokawa, S. J. Parke, and J. W. F. Valle, “CP Violation and Neutrino Oscillations,” Prog. Part. Nucl. Phys. 60 (2008) 338–402, arXiv:0710.0554 [hep-ph].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.