Papers
Topics
Authors
Recent
2000 character limit reached

Sparse Probabilistic Synthesis of Quantum Operations (2402.15550v2)

Published 23 Feb 2024 in quant-ph

Abstract: Successful implementations of quantum technologies require protocols and algorithms that use as few quantum resources as possible. However, many important quantum operations, such as continuous rotation gates in quantum computing or broadband pulses in NMR or MRI applications, can only be implemented approximately using finite quantum resources. This work develops an approach that enables -- at the cost of a modestly increased measurement repetition rate -- exact implementations on average. One proceeds by first building a library of a large number of different approximations to the desired gate operation; by randomly selecting these operations according to a pre-optimised probability distribution, one can on average implement the desired operation with a rigorously controllable approximation error. The approach relies on sophisticated tools from convex optimisation to efficiently find optimal probability distributions. A diverse spectrum of applications are demonstrated as (a) exactly synthesising rotations in fault-tolerant quantum computers using only low T-count circuits and (b) synthesising broadband and band-selective pulses of superior performance in quantum optimal control with (c) further applications in NMR or MRI. The approach is very general and a broad spectrum of practical applications in quantum technologies are explicitly demonstrated.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Suppressing quantum errors by scaling a surface code logical qubit, Nature 614, 676 (2023).
  2. B. van Straaten and B. Koczor, Measurement cost of metric-aware variational quantum algorithms, PRX Quantum 2, 030324 (2021).
  3. B. Koczor and S. C. Benjamin, Quantum analytic descent, Physical Review Research 4, 023017 (2022a).
  4. B. Koczor and S. C. Benjamin, Quantum natural gradient generalized to noisy and nonunitary circuits, Phys. Rev. A 106, 062416 (2022b).
  5. B. Koczor, Exponential error suppression for near-term quantum devices, Phys. Rev. X 11, 031057 (2021).
  6. S. Endo, S. C. Benjamin, and Y. Li, Practical quantum error mitigation for near-future applications, Phys. Rev. X 8, 031027 (2018).
  7. K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509 (2017).
  8. M. Elad, Sparse and redundant representations: from theory to applications in signal and image processing, Vol. 2 (Springer, 2010).
  9. I. Loris, L1packv2: A mathematica package for minimizing an l1-penalized functional, Computer physics communications 179, 895 (2008).
  10. M. H. Levitt, Spin dynamics: basics of nuclear magnetic resonance (John Wiley & Sons, 2013).
  11. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
  12. M. C. Tran, K. Sharma, and K. Temme, Locality and Error Mitigation of Quantum Circuits, arXiv:2303.06496  (2023).
  13. C. Piveteau, D. Sutter, and S. Woerner, Quasiprobability decompositions with reduced sampling overhead, npj Quantum Information 8, 12 (2022).
  14. S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit, SIAM review 43, 129 (2001).
  15. J. Lee, M. Kim, and Č. Brukner, Operationally invariant measure of the distance between quantum states by complementary measurements, Physical review letters 91, 087902 (2003).
  16. N. J. Ross and P. Selinger, Optimal ancilla-free clifford+ t approximation of z-rotations, arXiv preprint arXiv:1403.2975  (2014).
  17. J. Werschnik and E. Gross, Quantum optimal control theory, Journal of Physics B: Atomic, Molecular and Optical Physics 40, R175 (2007).
  18. H. Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum system from very few measurements, Nat. Phys. 16, 1050 (2020).
  19. G. Boyd and B. Koczor, Training variational quantum circuits with covar: Covariance root finding with classical shadows, Phys. Rev. X 12, 041022 (2022).
  20. T. Jones and S. Benjamin, Questlink—mathematica embiggened by a hardware-optimised quantum emulator*, Quantum Science and Technology 5, 034012 (2020).
  21. R. Meister, pyQuEST - A Python interface for the Quantum Exact Simulation Toolkit (2022).
  22. A. Richards, University of Oxford Advanced Research Computing  (2015).
  23. E. Campbell, Shorter gate sequences for quantum computing by mixing unitaries, Phys. Rev. A 95, 042306 (2017).
  24. S. Akibue, G. Kato, and S. Tani, Probabilistic unitary synthesis with optimal accuracy, arXiv preprint arXiv:2301.06307  (2023).
  25. M. Braun and S. J. Glaser, Cooperative pulses, Journal of Magnetic Resonance 207, 114 (2010).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.