Papers
Topics
Authors
Recent
2000 character limit reached

Unveiling the Importance of Nonshortest Paths in Quantum Networks (2402.15462v5)

Published 23 Feb 2024 in quant-ph

Abstract: Quantum networks (QNs) exhibit stronger connectivity than predicted by classical percolation, yet the origin of this phenomenon remains unexplored. We apply a statistical physics model -- concurrence percolation -- to uncover the origin of stronger connectivity on hierarchical scale-free networks, the ($U,V$) flowers. These networks allow full analytical control over path connectivity through two adjustable path-length parameters, $U \leq V$. This precise control enables us to determine critical exponents well beyond current simulation limits, revealing that classical and concurrence percolations, while both satisfying the hyperscaling relation, fall into distinct universality classes. This distinction arises from how they "superpose" parallel, non-shortest path contributions into overall connectivity. Concurrence percolation, unlike its classical counterpart, is sensitive to non-shortest paths and shows higher resilience to detours as these paths lengthen. This enhanced resilience is also observed in real-world hierarchical, scale-free Internet networks. Our findings highlight a crucial principle for QN design: when non-shortest paths are abundant, they notably enhance QN connectivity beyond what is achievable with classical percolation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A vision for the road ahead, Science 362, eaam9288 (2018).
  2. A. Acín, J. I. Cirac, and M. Lewenstein, Entanglement percolation in quantum networks, Nat. Phys. 3, 256 (2007).
  3. E. Chitambar and M.-H. Hsieh, Relating the resource theories of entanglement and quantum coherence, Phys. Rev. Lett. 117, 10.1103/PhysRevLett.117.020402 (2016).
  4. X. Meng, J. Gao, and S. Havlin, Concurrence Percolation in Quantum Networks, Phys. Rev. Lett. 126, 170501 (2021).
  5. H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2, Commun. Math. Phys. 74, 41 (1980).
  6. S. Galam and A. Mauger, Universal formulas for percolation thresholds, Physical Review E 53, 2177 (1996).
  7. R. Cohen, D. ben Avraham, and S. Havlin, Percolation critical exponents in scale-free networks, Physical Review E 66, 036113 (2002).
  8. G. Tilch, T. Ermakova, and B. Fabian, A multilayer graph model of the internet topology, Int. J. Netw. Virtual Organ. 22, 219 (2020).
  9. H. D. Rozenfeld, S. Havlin, and D. ben Avraham, Fractal and transfractal recursive scale-free nets, New Journal of Physics 9, 10.1088/1367-2630/9/6/175 (2007).
  10. S. Pirandola, End-to-end capacities of a quantum communication network, Communications Physics 2, 1 (2019).
  11. H. D. Rozenfeld and D. ben Avraham, Percolation in hierarchical scale-free nets, Physical Review E 75, 10.1103/PhysRevE.75.061102 (2007).
  12. R. J. Duffin, Topology of series-parallel networks, J. Math. Anal. Appl. 10, 303 (1965).
  13. J. C. Wierman, Bond percolation on honeycomb and triangular lattices, Adv. Appl. Probab. 13, 298 (1981).
  14. J. Cardy, Conformal Invariance and Percolation (2001), arxiv:math-ph/0103018 .
  15. K. Christensen and N. R. Moloney, Complexity and criticality, Vol. 1 (World Scientific Publishing Company, 2005).
  16. D. ben Avraham and S. Havlin, Diffusion and reactions in fractals and disordered systems,  16, L269 (2000).
  17. A. Ashtekar and E. Bianchi, A short review of loop quantum gravity, Rep. Prog. Phys. 84, 042001 (2021).
  18. D. J. Amit, Renormalization of the Potts model, J. Phys. A: Math. Gen. 9, 1441 (1976).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.