Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Specialising Neural-network Quantum States for the Bose Hubbard Model (2402.15424v1)

Published 23 Feb 2024 in cond-mat.quant-gas

Abstract: Projected variational wavefunctions such as the Gutzwiller, many-body correlator and Jastrow ansatzes have provided crucial insight into the nature of superfluid-Mott insulator transition in the Bose Hubbard model (BHM) in two or more spatial dimensions. However, these ansatzes have no obvious tractable and systematic way of being improved. A promising alternative is to use Neural-network quantum states (NQS) based on Restricted Boltzmann Machines (RBMs). With binary visible and hidden units NQS have proven to be a highly effective at describing quantum states of interacting spin-1/2 lattice systems. The application of NQS to bosonic systems has so far been based on one-hot encoding from machine learning where the multi-valued site occupation is distributed across several binary-valued visible units of an RBM. Compared to spin-1/2 systems one-hot encoding greatly increases the number of variational parameters whilst also making their physical interpretation opaque. Here we revisit the construction of NQS for bosonic systems by reformulating a one-hot encoded RBM into a correlation operator applied to a reference state, analogous to the structure of the projected variational ansatzes. In this form we then propose a number of specialisations of the RBM motivated by the physics of the BHM and the ability to capture exactly the projected variational ansatzes. We analyse in detail the variational performance of these new RBM variants for a 10 x 10 BHM, using both a standard Bose condensate state and a pre-optimised Jastrow + many-body correlator state as the reference state of the calculation. Several of our new ansatzes give robust results as nearly good as one-hot encoding across the regimes of the BHM, but at a substantially reduced cost. Such specialised NQS are thus primed tackle bosonic lattice problems beyond the accuracy of classic variational wavefunctions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 URL https://link.aps.org/doi/10.1103/RevModPhys.80.885
  2. Spielman I B, Phillips W D and Porto J V 2007 Phys. Rev. Lett. 98 080404 URL https://link.aps.org/doi/10.1103/PhysRevLett.98.080404
  3. Sachdev S 2011 Quantum Phase Transitions, 2nd ed. (Cambridge University Press) URL https://doi.org/10.1017/CBO9780511973765
  4. Wahl T B, Pal A and Simon S H 2019 Nature Physics 15 164 URL https://doi.org/10.1038/s41567-018-0339-x
  5. Palmer R N and Jaksch D 2006 Phys. Rev. Lett. 96 180407 URL https://link.aps.org/doi/10.1103/PhysRevLett.96.180407
  6. Becca F and Sorella S 2017 Quantum Monte Carlo Approaches for Correlated Systems (Cambridge University Press) URL https://doi.org/10.1017/9781316417041
  7. Gubernatis J, Kawashima N and Werner P 2016 Quantum Monte Carlo Methods: Algorithms for Lattice Models (Cambridge University Press) URL https://doi.org/10.1017/CBO9780511902581
  8. Zwerger W 2003 Journal of Optics B: Quantum and Semiclassical Optics 5 S9 URL https://dx.doi.org/10.1088/1464-4266/5/2/352
  9. Yokoyama H and Ogata M 2008 Journal of Physics and Chemistry of Solids 69 3356 URL http://dx.doi.org/10.1016/j.jpcs.2008.06.087
  10. Yokoyama H, Miyagawa T and Ogata M 2011 Journal of the Physical Society of Japan 80 084607 URL http://dx.doi.org/10.1143/JPSJ.80.084607
  11. McMillan W L 1965 Phys. Rev. 138 A442 URL https://link.aps.org/doi/10.1103/PhysRev.138.A442
  12. Ceperley D, Chester G V and Kalos M H 1977 Phys. Rev. B 16 3081 URL https://link.aps.org/doi/10.1103/PhysRevB.16.3081
  13. Carleo G and Troyer M 2017 Science 355 602606 URL https://science.sciencemag.org/content/355/6325/602
  14. Gao X and Duan L M 2017 Nature Communications 8 662 URL https://www.nature.com/articles/s41467-017-00705-2
  15. Carleo G, Nomura Y and Imada M 2018 Nature Communications 5322 URL https://www.nature.com/articles/s41467-018-07520-3
  16. Choo K, Neupert T and Carleo G 2019 Phys. Rev. B 100 125124 URL https://link.aps.org/doi/10.1103/PhysRevB.100.125124
  17. Irikura N and Saito H 2020 Phys. Rev. Research 2 013284 URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.013284
  18. Schmitt M and Heyl M 2020 Phys. Rev. Lett. 125 100503 URL https://link.aps.org/doi/10.1103/PhysRevLett.125.100503
  19. Liang X, Dong S J and He L 2021 Phys. Rev. B 103 035138 URL https://link.aps.org/doi/10.1103/PhysRevB.103.035138
  20. Saito H and Kato M 2018 Journal of the Physical Society of Japan 87 014001 (Preprint https://doi.org/10.7566/JPSJ.87.014001) URL https://doi.org/10.7566/JPSJ.87.014001
  21. Luo D and Clark B K 2019 Phys. Rev. Lett. 122 226401 URL https://link.aps.org/doi/10.1103/PhysRevLett.122.226401
  22. Tubman N M 2016 ArXiv preprint, [cond-mat.str-el] 1609.08142
  23. Dong X Y, Pollmann F and Zhang X F 2019 Phys. Rev. B 99 121104 URL https://link.aps.org/doi/10.1103/PhysRevB.99.121104
  24. Carrasquilla J and Melko R G 2017 Nature Physics 13 431 URL https://doi.org/10.1038/nphys4035
  25. Schindler F, Regnault N and Neupert T 2017 Phys. Rev. B 95 245134 URL https://link.aps.org/doi/10.1103/PhysRevB.95.245134
  26. Yoshioka N and Hamazaki R 2019 Phys. Rev. B 99 214306 URL https://link.aps.org/doi/10.1103/PhysRevB.99.214306
  27. Nagy A and Savona V 2019 Phys. Rev. Lett. 122 URL http://dx.doi.org/10.1103/PhysRevLett.122.250501
  28. Hartmann M J and Carleo G 2019 Phys. Rev. Lett. 122 250502 URL https://link.aps.org/doi/10.1103/PhysRevLett.122.250502
  29. Le Roux N and Bengio Y 2008 Neural Computation 20 1631 (Preprint https://doi.org/10.1162/neco.2008.04-07-510) URL https://doi.org/10.1162/neco.2008.04-07-510
  30. Lu S, Gao X and Duan L M 2019 Phys. Rev. B 99 155136 URL https://link.aps.org/doi/10.1103/PhysRevB.99.155136
  31. Clark S R 2018 Journal of Physics A: Mathematical and Theoretical 51 135301 URL http://dx.doi.org/10.1088/1751-8121/aaaaf2
  32. Pei M Y and Clark S R 2021 Entropy 23 879 URL https://www.mdpi.com/1099-4300/23/7/879
  33. Pei M Y and Clark S R 2021 J. Phys. A: Math. Theor. 54 405304 URL https://dx.doi.org/10.1088/1751-8121/ac1f3d
  34. McBrian K, Carleo G and Khatami E 2019 Journal of Physics: Conference Series 1290 012005 URL https://doi.org/10.1088/1742-6596/1290/1/012005
  35. Vargas-Calderón V, Vinck-Posada H and González F A 2020 Journal of the Physical Society of Japan 89 094002 URL http://dx.doi.org/10.7566/JPSJ.89.094002
  36. Nomura Y 2020 Journal of the Physical Society of Japan 89 054706 (Preprint https://doi.org/10.7566/JPSJ.89.054706) URL https://doi.org/10.7566/JPSJ.89.054706
  37. Saito H 2017 Journal of the Physical Society of Japan 86 093001 (Preprint https://doi.org/10.7566/JPSJ.86.093001) URL https://doi.org/10.7566/JPSJ.86.093001
  38. Guo C and Berkhahn F 2016 ArXiv preprint, [cs.LG] 1604.06737 URL https://arxiv.org/abs/1604.06737
  39. Feynman R 1998 Statistical Mechanics: A Set Of Lectures Advanced Books Classics (Avalon Publishing) ISBN 9780813346106 URL https://books.google.co.uk/books?id=Ou4ltPYiXPgC
  40. Lewenstein M, Sanpera A and Ahufinger V 2012 Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems (Oxford University Press) URL https://doi.org/10.1093/acprof:oso/9780199573127.001.0001
  41. Coleman P 2015 Introduction to Many Body Physics (Cambridge University Press) URL https://doi.org/10.1017/CBO9781139020916
  42. Stoof H T C, Gubbels K B and Dickerscheid D B M 2009 Ultracold Quantum Fields Theoretical and Mathematical Physics (Springer Netherlands) URL https://doi.org/10.1007/978-1-4020-8763-9
  43. Krauth W and Trivedi N 1991 Europhysics Letters (EPL) 14 627 URL https://doi.org/10.1209/0295-5075/14/7/003
  44. Elstner N and Monien H 1999 Phys. Rev. B 59 12184 URL https://link.aps.org/doi/10.1103/PhysRevB.59.12184
  45. Gros C 1989 Ann. Phys. 189 53 URL http://www.sciencedirect.com/science/article/pii/0003491689900778
  46. Krauth W 2006 Statistical Mechanics: Algorithms and Computations Oxford Masters Series in Physics: Statistical, Computational and Theoretical Physics (Oxford University Press) URL https://doi.org/10.1093/oso/9780198515357.001.0001
  47. Lou J and Sandvik A W 2007 Phys. Rev. B 76 104432 URL https://link.aps.org/doi/10.1103/PhysRevB.76.104432
  48. Nightingale M P and Melik-Alaverdian V 2001 Phys. Rev. Lett. 87 043401 URL https://link.aps.org/doi/10.1103/PhysRevLett.87.043401
  49. Toulouse J and Umrigar C J 2007 J. Chem. Phys. 126 084102 (Preprint http://dx.doi.org/10.1063/1.2437215) URL http://dx.doi.org/10.1063/1.2437215
  50. Sorella S 2001 Phys. Rev. B 64 024512 URL https://link.aps.org/doi/10.1103/PhysRevB.64.024512
  51. Gutzwiller M C 1963 Phys. Rev. Lett. 10 159 URL https://link.aps.org/doi/10.1103/PhysRevLett.10.159
  52. van Oosten D, van der Straten P and Stoof H T C 2001 Phys. Rev. A 63 URL http://dx.doi.org/10.1103/PhysRevA.63.053601
  53. Freericks J K and Monien H 1994 Europhysics Letters (EPL) 26 545 URL http://dx.doi.org/10.1209/0295-5075/26/7/012
  54. Jastrow R 1955 Phys. Rev. 98 1479 URL https://link.aps.org/doi/10.1103/PhysRev.98.1479
  55. Pitaevskii L and Stringari S 2016 Bose-Einstein Condensation and Superfluidity Oxford Science Publications (Oxford University Press) URL https://doi.org/10.1093/acprof:oso/9780198758884.001.0001
  56. Hinton G E 2002 Neural Comput. 14 1771 URL https://doi.org/10.1162/089976602760128018
  57. Deng D L, Li X and Das Sarma S 2017 Phys. Rev. B 96 195145 URL https://link.aps.org/doi/10.1103/PhysRevB.96.195145
  58. Kaubruegger R, Pastori L and Budich J C 2018 Phys. Rev. B 97 195136 URL https://link.aps.org/doi/10.1103/PhysRevB.97.195136
  59. Hinton G E and Salakhutdinov R R 2006 Science 31 504 URL https://www.science.org/doi/abs/10.1126/science.1127647
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.