Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Higher order measures of risk and stochastic dominance (2402.15387v1)

Published 23 Feb 2024 in q-fin.RM, math.OC, and q-fin.PM

Abstract: Higher order risk measures are stochastic optimization problems by design, and for this reason they enjoy valuable properties in optimization under uncertainties. They nicely integrate with stochastic optimization problems, as has been observed by the intriguing concept of the risk quadrangles, for example. Stochastic dominance is a binary relation for random variables to compare random outcomes. It is demonstrated that the concepts of higher order risk measures and stochastic dominance are equivalent, they can be employed to characterize the other. The paper explores these relations and connects stochastic orders, higher order risk measures and the risk quadrangle. Expectiles are employed to exemplify the relations obtained.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Coherent Measures of Risk. Mathematical Finance, 9:203–228, 1999. doi:10.1111/1467-9965.00068.
  2. Bidual representation of expectiles. Risks, 11(12):220, 2023. ISSN 2227-9091. doi:10.3390/risks11120220.
  3. F. Bellini and C. Caperdoni. Coherent distortion risk measures and higher-order stochastic dominances. North American Actuarial Journal, 11(2):35–42, 2007. doi:10.1080/10920277.2007.10597446.
  4. Generalized quantiles as risk measures. Insurance: Mathematics and Economics, 54:41–48, 2014. doi:10.1016/j.insmatheco.2013.10.015.
  5. Expectiles, omega ratios and stochastic ordering. Methodology and Computing in Applied Probability, 20(3):855–873, 2016. doi:10.1007/s11009-016-9527-2.
  6. A. Ben-Tal and M. Teboulle. An old-new concept of convex risk measures: The optimized certainty equivalent. Mathematical Finance, 17:449–476, 2007.
  7. Asset liability management under sequential stochastic dominance constraints, 2023. URL https://optimization-online.org/?p=24837.
  8. D. Dentcheva and G. Martinez. Two-stage stochastic optimization problems with stochastic ordering constraints on the recourse. European Journal of Operational Research, 219(1):1–8, 2012. doi:10.1016/j.ejor.2011.11.044.
  9. Kusuoka representation of higher order dual risk measures. Annals of Operations Research, 181:325–335, 2010. doi:10.1007/s10479-010-0747-5.
  10. P. Dommel and A. Pichler. Convex risk measures based on divergence. Pure and Applied Functional Analysis, 6(6):1157–1181, 2021.
  11. J. Dupačová and M. Kopa. Robustness of optimal portfolios under risk and stochastic dominance constraints. European Journal of Operational Research, 234(2):434–441, 2014. doi:10.1016/j.ejor.2013.06.018.
  12. M. Farooq and I. Steinwart. Learning rates for kernel-based expectile regression. Machine Learning, 108(2):203–227, 2018. doi:10.1007/s10994-018-5762-9.
  13. Can commodities dominate stock and bond portfolios? Annals of Operations Research, 282(1-2):155–177, 2019. doi:10.1007/s10479-018-2996-7.
  14. W. J. Gutjahr and A. Pichler. Stochastic multi-objective optimization: a survey on non-scalarizing methods. Annals of Operations Research, 236(2):1–25, 2013. doi:10.1007/s10479-013-1369-5.
  15. Individual optimal pension allocation under stochastic dominance constraints. Annals of Operations Research, 260(1–2):255–291, 2016. doi:10.1007/s10479-016-2387-x.
  16. Multistage stochastic dominance: an application to pension fund management. Annals of Operations Research, 2023. doi:10.1007/s10479-023-05658-y.
  17. P. A. Krokhmal. Higher moment coherent risk measures. Quantitative Finance, 7(4):373–387, 2007. doi:10.1080/14697680701458307.
  18. S. Kusuoka. On law invariant coherent risk measures. In Advances in mathematical economics, volume 3, chapter 4, pages 83–95. Springer, 2001. doi:10.1007/978-4-431-67891-5.
  19. R. Lakshmanan and A. Pichler. Expectiles in risk averse stochastic programming and dynamic optimization. Pure and Applied Functional Analysis, 2023.
  20. F. Maggioni and G. Ch. Pflug. Bounds and approximations for multistage stochastic programs. SIAM Journal on Optimization, 26(1):831–855, 2016. ISSN 1095-7189. doi:10.1137/140971889.
  21. F. Maggioni and G. Ch. Pflug. Guaranteed bounds for general non-discrete multistage risk-averse stochastic optimization programs. SIAM Journal on Optimization, 29(1):454–483, 2019. doi:10.1137/17M1140601.
  22. Expectile risk quadrangles and applications, 2024. sumbitted for review.
  23. A. Müller and D. Stoyan. Comparison methods for stochastic models and risks. Wiley series in probability and statistics. Wiley, Chichester, 2002. ISBN 978-0-471-49446-1. URL https://books.google.com/books?id=a8uPRWteCeUC.
  24. Asymmetric least squares estimation and testing. Econometrica, 55(4):819–847, 1987. doi:10.2307/1911031.
  25. W. Ogryczak and A. Ruszczyński. From stochastic dominance to mean-risk models: Semideviations as risk measures. European Journal of Operational Research, 116:33–50, 1999. doi:10.1016/S0377-2217(98)00167-2.
  26. W. Ogryczak and A. Ruszczyński. On consistency of stochastic dominance and mean–semideviation models. Math. Program., Ser. B, 89:217–232, 2001. doi:10.1007/s101070000203.
  27. W. Ogryczak and A. Ruszczyński. Dual stochastic dominance and related mean-risk models. SIAM Journal on Optimization, 13(1):60–78, 2002. doi:10.1137/S1052623400375075.
  28. G. Ch. Pflug. Some remarks on the Value-at-Risk and the Conditional Value-at-Risk. In S. Uryasev, editor, Probabilistic Constrained Optimization, volume 49 of Nonconvex Optimization and its Application, chapter 15, pages 272–281. Springer US, 2000. doi:10.1007/978-1-4757-3150-7.
  29. G. Ch. Pflug and W. Römisch. Modeling, Measuring and Managing Risk. World Scientific, River Edge, NJ, 2007. doi:10.1142/9789812708724.
  30. A. Pichler. The natural Banach space for version independent risk measures. Insurance: Mathematics and Economics, 53(2):405–415, 2013. doi:10.1016/j.insmatheco.2013.07.005.
  31. A. Pichler. A quantitative comparison of risk measures. Annals of Operations Research, 254(1):251–275, 2017. doi:10.1007/s10479-017-2397-3.
  32. A. Pichler and A. Shapiro. Minimal representation of insurance prices. Insurance: Mathematics and Economics, 62:184–193, 2015. doi:10.1016/j.insmatheco.2015.03.011.
  33. R. T. Rockafellar and S. Uryasev. Optimization of Conditional Value-at-Risk. Journal of Risk, 2(3):21–41, 2000. doi:10.21314/JOR.2000.038.
  34. R. T. Rockafellar and S. Uryasev. The fundamental risk quadrangle in risk management, optimization and statistical estimation. Surveys in Operations Research and Management Science, 18(1-2):33–53, 2013. doi:10.1016/j.sorms.2013.03.001.
  35. M. Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171–176, 1958. URL https://projecteuclid.org/euclid.pjm/1103040253.
  36. A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press, 1998. doi:10.1017/CBO9780511802256. URL http://books.google.com/books?id=UEuQEM5RjWgC.
  37. J. F. Ziegel. Coherence and elicitability. Mathematical Finance, 26(4):901–918, 2014. doi:10.1111/mafi.12080.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com