Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Martingale Characterizations of Risk-Averse Stochastic Optimization Problems (1802.03639v2)

Published 10 Feb 2018 in math.OC

Abstract: This paper addresses risk awareness of stochastic optimization problems. Nested risk measures appear naturally in this context, as they allow beneficial reformulations for algorithmic treatments. The reformulations presented extend usual Hamilton-Jacobi-BeLLMan equations in dynamic optimization by involving risk awareness in the problem formulation. Nested risk measures are built on risk measures, which originate by conditioning on the history of a stochastic process. We derive martingale properties of these risk measures and use them to prove continuity. It is demonstrated that stochastic optimization problems, which incorporate risk awareness via nesting risk measures, are continuous with respect to the natural distance governing these optimization problems, the nested distance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.