Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Amplified Amplitude Estimation: Exploiting Prior Knowledge to Improve Estimates of Expectation Values (2402.14791v2)

Published 22 Feb 2024 in quant-ph

Abstract: We provide a method for estimating the expectation value of an operator that can utilize prior knowledge to accelerate the learning process on a quantum computer. Specifically, suppose we have an operator that can be expressed as a concise sum of projectors whose expectation values we know a priori to be $O(\epsilon)$. In that case, we can estimate the expectation value of the entire operator within error $\epsilon$ using a number of quantum operations that scales as $O(1/\sqrt{\epsilon})$. We then show how this can be used to reduce the cost of learning a potential energy surface in quantum chemistry applications by exploiting information gained from the energy at nearby points. Furthermore, we show, using Newton-Cotes methods, how these ideas can be exploited to learn the energy via integration of derivatives that we can estimate using a priori knowledge. This allows us to reduce the cost of energy estimation if the block-encodings of directional derivative operators have a smaller normalization constant than the Hamiltonian of the system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. D. W. Berry, H. M. Wiseman, and J. K. Breslin, Optimal input states and feedback for interferometric phase estimation, Phys. Rev. A 63, 053804 (2001).
  2. G. H. Low and I. L. Chuang, Optimal Hamiltonian Simulation by Quantum Signal Processing, Phys. Rev. Lett. 118, 010501 (2017).
  3. G. H. Low and I. L. Chuang, Hamiltonian Simulation by Qubitization, Quantum 3, 163 (2019).
  4. N. Wiebe, A. Kapoor, and K. M. Svore, Quantum deep learning, Quantum Info. Comput. 16, 541–587 (2016).
  5. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings 35th annual symposium on foundations of computer science (Ieee, 1994) pp. 124–134.
  6. D. S. Sholl and J. A. Steckel, Density functional theory: a practical introduction (John Wiley & Sons, 2022).
  7. Y. Ge, J. Tura, and J. I. Cirac, Faster ground state preparation and high-precision ground energy estimation with fewer qubits, Journal of Mathematical Physics 60, 022202 (2019).
  8. L. Lin and Y. Tong, Near-optimal ground state preparation, Quantum 4, 372 (2020).
  9. A. M. Childs and N. Wiebe, Hamiltonian Simulation Using Linear Combinations of Unitary Operations, Quantum Information and Computation 12, 901–924 (2012).
  10. R. D. Somma and S. Boixo, Spectral Gap Amplification, SIAM Journal on Computing 42, 593 (2013).
  11. S. P. Jordan, Fast Quantum Algorithm for Numerical Gradient Estimation, Phys. Rev. Lett. 95, 050501 (2005).
  12. A. Gilyén, S. Arunachalam, and N. Wiebe, Optimizing Quantum Optimization Algorithms via Faster Quantum Gradient Computation, in Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19 (Society for Industrial and Applied Mathematics, USA, 2019) p. 1425–1444.
  13. H. Zhai and G. K.-L. Chan, Low communication high performance ab initio density matrix renormalization group algorithms, The Journal of Chemical Physics 154, 224116 (2021).
  14. N. S. Kambo, Error of the Newton-Cotes and Gauss-Legendre Quadrature Formulas, Mathematics of Computation 24, 261 (1970).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: