Equidistribution for Random Polynomials and Systems of Random Holomorphic Sections (2402.14631v7)
Abstract: This article addresses an equidistribution problem concerning the zeros of systems of random holomorphic sections of positive line bundles on compact K\"{a}hler manifolds and random polynomials on $\mathbb{C}{m}$ in the setting of the weighted pluripotential theory. For random polynomials, we consider non-orthonormal bases and prove an equidistribution result which is more general than the ones acquired before for non-discrete probability measures. More precisely, our result demonstrates that the equidistribution holds true even when the random coefficients in the basis representation are not independent and identically distributed (i.i.d.), and moreover, they are not constrained to any particular probability distribution. For random holomorphic sections, by extending the concept of a sequence of asymptotically Bernstein-Markov measures introduced by Bayraktar, Bloom and Levenberg in their paper to the setting of holomorphic line bundles over compact Kahler manifolds, we derive a global equidistribution, variance estimate and expected distribution theorems related to the zeros of systems of random holomorphic sections for large tensor powers of a fixed holomorphic line bundle for any codimension k, generalizing a previous result of Bayraktar in his 2016 paper and giving also a positive answer to a question posed in the same paper, asking whether the equidistribution is true for non-projective manifolds. For both random holomorphic polynomials on $\mathbb{C}{m}$ and systems of random holomorphic sections, the variance estimation method detailed in another paper of the author with Bojnik is significant.
- T. Bayraktar. Equidistribution of zeros of random holomorphic sections. Indiana Univ. Math. J., 65(5):1759–1793, 2016.
- Random polynomials in several complex variables. Journal d’Analyse Mathématique , December 2023.
- A. Bojnik, O. Günyüz. , Random systems of holomorphic sections of a sequence of line bundles on compact Kähler manifolds. arXiv:2401.08243.
- Bedford, E.: Survey of pluri-potential theory. In: Fornaess, J.E. (ed.) Several Complex Variables: Proceedings of the Mittag-Leffler Institute 1987–1988, Mathematical Notes, vol. 38, Princeton University Press, NJ, 1993.
- E. Bedford and B. A. Taylor. A new capacity for plurisubharmonic functions. Acta Math., 149(1-2):1–40, 1982.
- A. Bloch, G. Polya. On the roots of certain algebraic equations. Proc. Lond. Math. Soc., 33, 102–114, 1932.
- T. Bloom. On families of polynomials which approximate the pluricomplex Green function. Indiana Univ. Math. J., 50(4), 1545–1566, 2001.
- T. Bloom. Random polynomials and Green functions. Int. Math. Res. Not., (28):1689–1708, 2005.
- T. Bloom. Random polynomials and (pluri-)potential theory. Ann. Polon. Math, (91), no:2-3, 131–141, 2007.
- T. Bloom and B. Shiffman. Zeros of random polynomials on ℂmsuperscriptℂ𝑚\mathbb{C}^{m}blackboard_C start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT. Math. Res. Lett., 14(3):469–479, 2007.
- T. Bloom and N. Levenberg. Random Polynomials and Pluripotential-Theoretic Extremal Functions. Potential Anal., 42(2):311–334, 2015.
- T. Bloom and D. Dauvergne. Asymptotic zero distribution of random orthogonal polynomials. Ann. Probab., 47(5):3202–3230, 2019.
- Universality results for zeros of random holomorphic sections. Trans. Amer. Math. Soc., 373(6): 3765-3791(DOI:10.1090/tran/7807), 2020.
- Equidistribution for sequences of line bundles on normal Kähler spaces Geom. Topol., 21(2): 923–962, 2017.
- J.-P. Demailly. Monge-Ampère operators, Lelong numbers and intersection theory. Complex analysis and geometry, Plenum, New York, 115–193, 1993.
- J.-P. Demailly. Complex analytic and differential geometry. http://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/agbook.pdf, 2012.
- P. Erdös and P. Turán. On the distribution of roots of polynomials. Ann. of Math. (2), 51:105–119, 1950.
- J. P. Forrester, G. Honner. Exact statistical properties of the zeros of complex random polynomials. Journal of Physics A, 32: 2961–2981, 1999.
- J.E. Fornaess, N. Sibony. Oka’s inequality for currents and applications. Math. Ann. , 301: 399-419, 1995. Fornaess, J.E., Sibony, N.: Oka’s inequality for currents and applications. Math. Ann. 301, 399–419 (1995)
- O. Günyüz. Equidistribution of zeros random polynomials and random polynomial mappings on ℂmsuperscriptℂ𝑚\mathbb{C}^{m}blackboard_C start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT. To Appear in Mat. Sbornik.
- V. Guedj, A. Zeriahi. Intrinsic capacities on compact Kähler manifolds.. J. Geom. Anal., 4, 607-639, 2005.
- V. Guedj, A. Zeriahi. Degenerate Complex Monge-Ampère Equations, Universitext. European Mathematical Society, Switzerland, 2017.
- J. M. Hammersley. The zeros of a random polynomial. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II, pages 89–111, Berkeley and Los Angeles, 1956. University of California Press.
- J. H. Hannay Chaotic analytic zero points: exact statistics for those of a random spin state. Journal of Physics A., 29: 101–105, 1996.
- C. P. Hughes and A. Nikeghbali. The zeros of random polynomials cluster uniformly near the unit circle. Compos. Math., 144(3):734–746, 2008.
- D. Huybrechts. Complex Geometry. An introduction, Universitext. Springer- Verlag, Berlin, 2005.
- M. Kac. On the average number of real roots of a random algebraic equation. Bull. Amer. Math. Soc., 49:314–320, 1943.
- On the number of real roots of a random algebraic equation. III. Rec. Math. [Mat. Sbornik] N.S., 12(54):277–286, 1943.
- M.Klimek, Pluripotential Theory, Oxford Univ. Pres, Oxford, 1991.
- R. Molzon, Integral geometry of the Monge-Ampère operator. In: Contributions to Several Complex Variables in Honour of Wilhelm Stoll (Aspects of Mathematics) Friedr. Vieweg and Sohn, Braunschweig/Wiesbaden, 217-226, 1986.
- S. Nonnenmacher and A. Voros. Chaotic eigenfunctions in phase space. J. Statist. Phys., 92(3-4):431–518, 1998.
- J.M. Rojas. On the average number of real roots of certain random sparse polynomial systems. American Mathematical Society , In: The mathematics of numerical analysis (Park City, UT, 1995), Lectures in Appl. Math., 32: 689–699, 1996.
- E. B. Saff and V. Totik. Logarithmic potentials with external fields, volume 316 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom.
- M. Shub, S. Smale. Complexity of Bezout’s theorem. II. Volumes and Probabilities, Computational Algebraic Geometry (Nice, 1992) Birkhäuser, Progr. Math. 109: 267–285, 1993.
- B. Shiffman. Convergence of random zeros on complex manifolds. Sci. China Ser. A , 51: 707–720, 2008.
- B. Shiffman. Asymptotic expansion of the variance of random zeros on complex manifolds. arXiv: 2001.05550 .
- B. Shiffman and S. Zelditch. Distribution of zeros of random and quantum chaotic sections of positive line bundles. Comm. Math. Phys., 200(3):661–683, 1999.
- B. Shiffman and S. Zelditch. Number variance of random zeros on complex manifolds. Geom. Funct. Anal., 18: 1422–1475, 2008.
- B. Shiffman and S. Zelditch. Number variance of random zeros on complex manifolds, II: Smooth Statistics. Pure and Applied Mathematics Quarterly, 6(4): 1145–1167, 2010.
- V. P. Zakharyuta, Transfinite Diameter, Chebyshev Constants and Capacities in ℂmsuperscriptℂ𝑚\mathbb{C}^{m}blackboard_C start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT, Math Ussr Sbornik, Vol.25 (1975), 350–364.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.