Impact of Magnon Interactions on Transport in Honeycomb Antiferromagnets (2402.14572v1)
Abstract: The thermal transport of magnons has attracted substantial attention as an energy-efficient alternative to the transport of electrons. Most theoretical studies so far have been carried out within the frame of the linear spin-wave theory, which dramatically fails upon increasing the temperature and in the presence of competing interactions. In this work, we consider the impact of three- and four-magnon interactions in a honeycomb antiferromagnet, where such interactions are remarkably strong even at zero temperature. Using a combination of quantum field theory and mean-field theory, we compute the band structure of the interacting magnons and investigate the spin Nernst effect. We find that in the presence of in-plane Dzyaloshinskii-Moriya Interaction, the three-magnon interaction induces a non-reciprocal band splitting, even at zero temperature, leading to an enhancement of the spin Nernst conductivity. In contrast, the four-magnon interaction renormalizes the magnon spectrum at high temperatures, leading to a reduction of the overall magnon spin Nernst effect. These results suggest that interactions can massively influence the transport properties of magnons in antiferromagnets, even at zero temperature, and should be taken into account for predictive modeling.
- V. V. Kruglyak, S. O. Demokritov, and D. Grundler, Magnonics, Journal of Physics D: Applied Physics 43, 264001 (2010).
- S. M. Rezende, R. L. Rodríguez-Suárez, and A. Azevedo, Theory of the spin seebeck effect in antiferromagnets, Phys. Rev. B 93, 014425 (2016).
- H. Katsura, N. Nagaosa, and P. A. Lee, Theory of the thermal hall effect in quantum magnets, Phys. Rev. Lett. 104, 066403 (2010).
- R. Matsumoto and S. Murakami, Rotational motion of magnons and the thermal hall effect, Phys. Rev. B 84, 184406 (2011a).
- R. Matsumoto and S. Murakami, Theoretical prediction of a rotating magnon wave packet in ferromagnets, Phys. Rev. Lett. 106, 197202 (2011b).
- R. Matsumoto, R. Shindou, and S. Murakami, Thermal hall effect of magnons in magnets with dipolar interaction, Phys. Rev. B 89, 054420 (2014).
- R. Cheng, S. Okamoto, and D. Xiao, Spin nernst effect of magnons in collinear antiferromagnets, Phys. Rev. Lett. 117, 217202 (2016).
- V. A. Zyuzin and A. A. Kovalev, Magnon spin nernst effect in antiferromagnets, Phys. Rev. Lett. 117, 217203 (2016).
- H. Zhang and R. Cheng, A perspective on magnon spin Nernst effect in antiferromagnets, Applied Physics Letters 120, 090502 (2022).
- K. Shen, Magnon spin relaxation and spin hall effect due to the dipolar interaction in antiferromagnetic insulators, Phys. Rev. Lett. 124, 077201 (2020).
- A. Mook, J. Henk, and I. Mertig, Edge states in topological magnon insulators, Phys. Rev. B 90, 024412 (2014).
- S. A. Owerre, A first theoretical realization of honeycomb topological magnon insulator, Journal of Physics: Condensed Matter 28, 386001 (2016).
- H. Kondo, Y. Akagi, and H. Katsura, Three-dimensional topological magnon systems, Phys. Rev. B 100, 144401 (2019).
- A. Mook, J. Henk, and I. Mertig, Magnon nodal-line semimetals and drumhead surface states in anisotropic pyrochlore ferromagnets, Phys. Rev. B 95, 014418 (2017).
- A. Mook, J. Henk, and I. Mertig, Tunable magnon weyl points in ferromagnetic pyrochlores, Phys. Rev. Lett. 117, 157204 (2016).
- J. Fransson, A. M. Black-Schaffer, and A. V. Balatsky, Magnon dirac materials, Phys. Rev. B 94, 075401 (2016).
- P. A. McClarty, Topological magnons: A review, Annual Review of Condensed Matter Physics 13, 171 (2022).
- V. Guemard and A. Manchon, Unified formulation of interfacial magnonic pumping from noncollinear magnets, Phys. Rev. B 105, 054433 (2022).
- R. Takahashi and N. Nagaosa, Berry curvature in magnon-phonon hybrid systems, Phys. Rev. Lett. 117, 217205 (2016).
- Y.-S. Lu, J.-L. Li, and C.-T. Wu, Topological phase transitions of dirac magnons in honeycomb ferromagnets, Phys. Rev. Lett. 127, 217202 (2021).
- A. Mook, J. Henk, and I. Mertig, Thermal hall effect in noncollinear coplanar insulating antiferromagnets, Phys. Rev. B 99, 014427 (2019a).
- B. Li, S. Sandhoefner, and A. A. Kovalev, Intrinsic spin nernst effect of magnons in a noncollinear antiferromagnet, Phys. Rev. Res. 2, 013079 (2020c).
- V. M. Goli and A. Manchon, Crossover from diffusive to superfluid transport in frustrated magnets, Physical Review B 103, 104425 (2021).
- B. Brekke, A. Brataas, and A. Sudbø, Two-dimensional altermagnets: Superconductivity in a minimal microscopic model, Phys. Rev. B 108, 224421 (2023).
- T. Oguchi, Theory of spin-wave interactions in ferro- and antiferromagnetism, Phys. Rev. 117, 117 (1960).
- M. E. Zhitomirsky and A. L. Chernyshev, Colloquium: Spontaneous magnon decays, Rev. Mod. Phys. 85, 219 (2013).
- A. L. Chernyshev and P. A. Maksimov, Damped topological magnons in the kagome-lattice ferromagnets, Phys. Rev. Lett. 117, 187203 (2016).
- P. A. McClarty and J. G. Rau, Non-hermitian topology of spontaneous magnon decay, Phys. Rev. B 100, 100405 (2019).
- Y.-M. Li, X.-W. Luo, and K. Chang, Temperature-induced magnonic chern insulator in collinear antiferromagnets, Phys. Rev. B 107, 214417 (2023).
- T. Matsumoto and S. Hayami, Nonreciprocal magnons due to symmetric anisotropic exchange interaction in honeycomb antiferromagnets, Phys. Rev. B 101, 224419 (2020).
- R. S. Fishman, J. S. Gardner, and S. Okamoto, Orbital angular momentum of magnons in collinear magnets, Phys. Rev. Lett. 129, 167202 (2022).
- Q.-H. Chen, F.-J. Huang, and Y.-P. Fu, Damped topological magnons in honeycomb antiferromagnets, Phys. Rev. B 108, 024409 (2023).
- T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58, 1098 (1940).
- S. M. Rezende, A. Azevedo, and R. L. Rodríguez-Suárez, Introduction to antiferromagnetic magnons, Journal of Applied Physics 126, 151101 (2019).
- J. Colpa, Diagonalization of the quadratic boson hamiltonian, Physica A: Statistical Mechanics and its Applications 93, 327 (1978).
- D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010b).
- W. Nolting and A. Ramakanth, Quantum theory of magnetism (Springer Science & Business Media, 2009).
- G. D. Mahan, Many-particle physics (Springer Science & Business Media, 2000).
- A. R. Wildes, S. Okamoto, and D. Xiao, Search for nonreciprocal magnons in mnps3subscriptmnps3{\mathrm{mnps}}_{3}roman_mnps start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, Phys. Rev. B 103, 024424 (2021).
- Y. Shiomi, R. Takashima, and E. Saitoh, Experimental evidence consistent with a magnon nernst effect in the antiferromagnetic insulator mnps3subscriptmnps3{\mathrm{mnps}}_{3}roman_mnps start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, Phys. Rev. B 96, 134425 (2017).
- F. Xiao and Q. Tong, Tunable strong magnetic anisotropy in two-dimensional van der waals antiferromagnets, Nano Letters 22, 3946 (2022), pMID: 35549241.
- K. Deng and B. Flebus, Non-hermitian skin effect in magnetic systems, Phys. Rev. B 105, L180406 (2022).
- L. Saleem, U. Schwingenschlogl, and A. Manchon, Keldysh theory of thermal transport in multiband hamiltonians, unpublished (2024).
- Y. Cheng and S. Zhang, Spin transport in noncollinear antiferromagnetic metals, Physical Review B 102, 134403 (2020).
- S. Toth and B. Lake, Linear spin wave theory for single-q incommensurate magnetic structures, Journal of Physics: Condensed Matter 27, 166002 (2015).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.