Parallelized Midpoint Randomization for Langevin Monte Carlo (2402.14434v4)
Abstract: We study the problem of sampling from a target probability density function in frameworks where parallel evaluations of the log-density gradient are feasible. Focusing on smooth and strongly log-concave densities, we revisit the parallelized randomized midpoint method and investigate its properties using recently developed techniques for analyzing its sequential version. Through these techniques, we derive upper bounds on the Wasserstein distance between sampling and target densities. These bounds quantify the substantial runtime improvements achieved through parallel processing.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.