Stable Comodule Deformations and the Synthetic Adams-Novikov Spectral Sequence (2402.14274v1)
Abstract: We study the Adams-Novikov spectral sequence in $\mathbb{F}_p$-synthetic spectra, computing the synthetic analogs of $\mathrm{BP}$ and its cooperations to identify the synthetic Adams-Novikov $\mathrm{E}_2$-page, computed in a range with a synthetic algebraic Novikov spectral sequence. We then identify deformations associated to the Cartan-Eilenberg and algebraic Novikov spectral sequences in terms of stable comodule categories, categorifying an algebraic Novikov spectral sequence result of Gheorghe-Wang-Xu. We then apply Isaksen-Wang-Xu methods in $\mathbb{F}_p$-synthetic spectra to deduce differentials in the synthetic Adams-Novikov for the sphere, producing almost entirely algebraic computations through the 45-stem.
- “A deformation of Borel equivariant homotopy”, 2023 arXiv:2308.01873 [math.AT]
- Eva Belmont “A Cartan-Eilenberg spectral sequence for non-normal extensions” Id/No 106216 In J. Pure Appl. Algebra 224.4, 2020, pp. 21 DOI: 10.1016/j.jpaa.2019.106216
- Aldridge K Bousfield “The localization of spectra with respect to homology” In Topology 18.4, 1979, pp. 257–281
- Edgar H Brown Jr and Franklin P Peterson “A spectrum whose Zp cohomology is the algebra of reduced pth powers” In Topology 5.2 Elsevier, 1966, pp. 149–154
- Robert R. Bruner “ExtExt{\rm Ext}roman_Ext in the nineties” In Algebraic topology (Oaxtepec, 1991) 146, Contemp. Math. Amer. Math. Soc., Providence, RI, 1993, pp. 71–90 DOI: 10.1090/conm/146/01216
- Robert R. Bruner and John Rognes “The Adams spectral sequence for topological modular forms” 253, Math. Surv. Monogr. Providence, RI: American Mathematical Society (AMS), 2021 DOI: 10.1090/surv/253
- Robert Burklund “An extension in the Adams spectral sequence in dimension 54” In Bulletin of the London Mathematical Society 53.2 Wiley, 2020, pp. 404–407 URL: http://dx.doi.org/10.1112/blms.12428
- Robert Burklund “Multiplicative structures on Moore spectra”, 2022 arXiv:2203.14787 [math.AT]
- Robert Burklund, Jeremy Hahn and Andrew Senger “On the boundaries of highly connected, almost closed manifolds”, 2019 arXiv:1910.14116
- Robert Burklund, Jeremy Hahn and Andrew Senger “Galois reconstruction of Artin-Tate ℝℝ\mathbb{R}blackboard_R-motivic spectra”, 2020 arXiv:2010.10325 [math.AT]
- “The Adams differentials on the classes hj3superscriptsubscriptℎ𝑗3h_{j}^{3}italic_h start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT”, 2023 arXiv:2302.11869 [math.AT]
- Christian Carrick and Jack Morgan Davies “A synthetic approach to detecting v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-periodic families”, 2024 arXiv:2401.16508 [math.AT]
- “Topological modular forms” 201, Mathematical Surveys and Monographs American Mathematical Society, Providence, RI, 2014, pp. xxxii–318 URL: https://doi.org/10.1090/surv/201
- Daniel Dugger and Daniel C Isaksen “The motivic Adams spectral sequence” In Geometry & Topology 14.2 Mathematical Sciences Publishers, 2010, pp. 967–1014
- “Rings, modules, and algebras in stable homotopy theory” With an appendix by M. Cole 47, Mathematical Surveys and Monographs Providence, RI: American Mathematical Society, 1997, pp. xii+249
- Bogdan Gheorghe “The Motivic Cofiber of τ𝜏\tauitalic_τ” In Documenta Mathematica 23, 2018, pp. 1077–1127
- “ℂℂ\mathbb{C}blackboard_C-motivic modular forms” In J. Eur. Math. Soc. (JEMS) 24.10, 2022, pp. 3597–3628 DOI: 10.4171/JEMS/1171
- Bogdan Gheorghe, Guozhen Wang and Zhouli Xu “The special fiber of the motivic deformation of the stable homotopy category is algebraic” In Acta Mathematica 226, No. 2, 2021, pp. 319–407
- Saul Glasman “Day convolution for infinity-categories”, 2016 arXiv:1308.4940 [math.CT]
- Alice Hedenlund “Multiplicative Tate Spectral Sequences”, 2020
- Mark Hovey “Homotopy theory of comodules over a Hopf algebroid” In Contemp. Math. 346 American Mathematical Society, Providence, RI, 2004, pp. 261–304
- Mark Hovey, John Harold Palmieri and Neil P Strickland “Axiomatic stable homotopy theory” American Mathematical Soc., 1997
- Po Hu, Igor Kriz and Kyle Ormsby “Remarks on motivic homotopy theory over algebraically closed fields” In Journal of K-Theory 7.1 Cambridge University Press, 2011, pp. 55–89
- Daniel Isaksen “Stable stems” American mathematical society, 2019
- Daniel C. Isaksen “Stable stems”, 2014 arXiv:1407.8418
- “The ℂℂ\mathbb{C}blackboard_C-motivic Adams-Novikov spectral sequence for topological modular forms”, 2023 arXiv:2302.09123 [math.AT]
- Daniel C. Isaksen, Guozhen Wang and Zhouli Xu “Stable homotopy groups of spheres” In Proceedings of the National Academy of Science 117.40, 2020, pp. 24757–24763 DOI: 10.1073/pnas.2012335117
- Daniel C. Isaksen, Guozhen Wang and Zhouli Xu “Stable homotopy groups of spheres: From dimension 0 to 90” In arXiv e-prints, 2020, pp. arXiv:2001.04511 DOI: 10.48550/arXiv.2001.04511
- Daniel C. Isaksen, Guozhen Wang and Zhouli Xu “Classical algebraic Novikov charts and C-motivic Adams charts for the cofiber of tau” Zenodo, 2022 DOI: 10.5281/zenodo.6987227
- Tyler Lawson “Synthetic spectra are (usually) cellular”, 2024 arXiv:2402.03257 [math.AT]
- Jacob Lurie “Higher Topos Theory” https://www.math.ias.edu/~lurie/papers/HTT.pdf Princeton University Press, 2009
- Jacob Lurie “Higher Algebra” https://www.math.ias.edu/~lurie/papers/HA.pdf, 2017
- Lorenzo Mantovani “Localizations and completions of stable ∞\infty∞-categories”, 2021 arXiv:2105.02285 [math.CT]
- Harvey Margolis “Spectra and the Steenrod algebra” Elsevier, 1983
- Haynes R Miller “On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space” In Journal of Pure and Applied Algebra 20.3 North-Holland, 1981, pp. 287–312
- John Palmieri “Stable homotopy over the Steenrod algebra” American Mathematical Soc., 2001
- Piotr Pstrągowski “Synthetic spectra and the cellular motivic category” In Inventiones mathematicae Springer, 2022, pp. 1–129
- Douglas C Ravenel “The structure of BP*BP𝐵subscript𝑃𝐵𝑃BP_{*}BPitalic_B italic_P start_POSTSUBSCRIPT * end_POSTSUBSCRIPT italic_B italic_P modulo an invariant prime ideal” In Topology 15.2 Elsevier, 1976, pp. 149–153
- Douglas C Ravenel “Complex cobordism and stable homotopy groups of spheres” American Mathematical Soc., 2003
- Guozhen Wang “Computations of the Adams-Novikov E2subscript𝐸2E_{2}italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-term” In Chinese Ann. Math. Ser. B 42.4, 2021, pp. 551–560 DOI: 10.1007/s11401-021-0277-2
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.