Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Stable Comodule Deformations and the Synthetic Adams-Novikov Spectral Sequence (2402.14274v1)

Published 22 Feb 2024 in math.AT

Abstract: We study the Adams-Novikov spectral sequence in $\mathbb{F}_p$-synthetic spectra, computing the synthetic analogs of $\mathrm{BP}$ and its cooperations to identify the synthetic Adams-Novikov $\mathrm{E}_2$-page, computed in a range with a synthetic algebraic Novikov spectral sequence. We then identify deformations associated to the Cartan-Eilenberg and algebraic Novikov spectral sequences in terms of stable comodule categories, categorifying an algebraic Novikov spectral sequence result of Gheorghe-Wang-Xu. We then apply Isaksen-Wang-Xu methods in $\mathbb{F}_p$-synthetic spectra to deduce differentials in the synthetic Adams-Novikov for the sphere, producing almost entirely algebraic computations through the 45-stem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. “A deformation of Borel equivariant homotopy”, 2023 arXiv:2308.01873 [math.AT]
  2. Eva Belmont “A Cartan-Eilenberg spectral sequence for non-normal extensions” Id/No 106216 In J. Pure Appl. Algebra 224.4, 2020, pp. 21 DOI: 10.1016/j.jpaa.2019.106216
  3. Aldridge K Bousfield “The localization of spectra with respect to homology” In Topology 18.4, 1979, pp. 257–281
  4. Edgar H Brown Jr and Franklin P Peterson “A spectrum whose Zp cohomology is the algebra of reduced pth powers” In Topology 5.2 Elsevier, 1966, pp. 149–154
  5. Robert R. Bruner “ExtExt{\rm Ext}roman_Ext in the nineties” In Algebraic topology (Oaxtepec, 1991) 146, Contemp. Math. Amer. Math. Soc., Providence, RI, 1993, pp. 71–90 DOI: 10.1090/conm/146/01216
  6. Robert R. Bruner and John Rognes “The Adams spectral sequence for topological modular forms” 253, Math. Surv. Monogr. Providence, RI: American Mathematical Society (AMS), 2021 DOI: 10.1090/surv/253
  7. Robert Burklund “An extension in the Adams spectral sequence in dimension 54” In Bulletin of the London Mathematical Society 53.2 Wiley, 2020, pp. 404–407 URL: http://dx.doi.org/10.1112/blms.12428
  8. Robert Burklund “Multiplicative structures on Moore spectra”, 2022 arXiv:2203.14787 [math.AT]
  9. Robert Burklund, Jeremy Hahn and Andrew Senger “On the boundaries of highly connected, almost closed manifolds”, 2019 arXiv:1910.14116
  10. Robert Burklund, Jeremy Hahn and Andrew Senger “Galois reconstruction of Artin-Tate ℝℝ\mathbb{R}blackboard_R-motivic spectra”, 2020 arXiv:2010.10325 [math.AT]
  11. “The Adams differentials on the classes hj3superscriptsubscriptℎ𝑗3h_{j}^{3}italic_h start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT”, 2023 arXiv:2302.11869 [math.AT]
  12. Christian Carrick and Jack Morgan Davies “A synthetic approach to detecting v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-periodic families”, 2024 arXiv:2401.16508 [math.AT]
  13. “Topological modular forms” 201, Mathematical Surveys and Monographs American Mathematical Society, Providence, RI, 2014, pp. xxxii–318 URL: https://doi.org/10.1090/surv/201
  14. Daniel Dugger and Daniel C Isaksen “The motivic Adams spectral sequence” In Geometry & Topology 14.2 Mathematical Sciences Publishers, 2010, pp. 967–1014
  15. “Rings, modules, and algebras in stable homotopy theory” With an appendix by M. Cole 47, Mathematical Surveys and Monographs Providence, RI: American Mathematical Society, 1997, pp. xii+249
  16. Bogdan Gheorghe “The Motivic Cofiber of τ𝜏\tauitalic_τ” In Documenta Mathematica 23, 2018, pp. 1077–1127
  17. “ℂℂ\mathbb{C}blackboard_C-motivic modular forms” In J. Eur. Math. Soc. (JEMS) 24.10, 2022, pp. 3597–3628 DOI: 10.4171/JEMS/1171
  18. Bogdan Gheorghe, Guozhen Wang and Zhouli Xu “The special fiber of the motivic deformation of the stable homotopy category is algebraic” In Acta Mathematica 226, No. 2, 2021, pp. 319–407
  19. Saul Glasman “Day convolution for infinity-categories”, 2016 arXiv:1308.4940 [math.CT]
  20. Alice Hedenlund “Multiplicative Tate Spectral Sequences”, 2020
  21. Mark Hovey “Homotopy theory of comodules over a Hopf algebroid” In Contemp. Math. 346 American Mathematical Society, Providence, RI, 2004, pp. 261–304
  22. Mark Hovey, John Harold Palmieri and Neil P Strickland “Axiomatic stable homotopy theory” American Mathematical Soc., 1997
  23. Po Hu, Igor Kriz and Kyle Ormsby “Remarks on motivic homotopy theory over algebraically closed fields” In Journal of K-Theory 7.1 Cambridge University Press, 2011, pp. 55–89
  24. Daniel Isaksen “Stable stems” American mathematical society, 2019
  25. Daniel C. Isaksen “Stable stems”, 2014 arXiv:1407.8418
  26. “The ℂℂ\mathbb{C}blackboard_C-motivic Adams-Novikov spectral sequence for topological modular forms”, 2023 arXiv:2302.09123 [math.AT]
  27. Daniel C. Isaksen, Guozhen Wang and Zhouli Xu “Stable homotopy groups of spheres” In Proceedings of the National Academy of Science 117.40, 2020, pp. 24757–24763 DOI: 10.1073/pnas.2012335117
  28. Daniel C. Isaksen, Guozhen Wang and Zhouli Xu “Stable homotopy groups of spheres: From dimension 0 to 90” In arXiv e-prints, 2020, pp. arXiv:2001.04511 DOI: 10.48550/arXiv.2001.04511
  29. Daniel C. Isaksen, Guozhen Wang and Zhouli Xu “Classical algebraic Novikov charts and C-motivic Adams charts for the cofiber of tau” Zenodo, 2022 DOI: 10.5281/zenodo.6987227
  30. Tyler Lawson “Synthetic spectra are (usually) cellular”, 2024 arXiv:2402.03257 [math.AT]
  31. Jacob Lurie “Higher Topos Theory” https://www.math.ias.edu/~lurie/papers/HTT.pdf Princeton University Press, 2009
  32. Jacob Lurie “Higher Algebra” https://www.math.ias.edu/~lurie/papers/HA.pdf, 2017
  33. Lorenzo Mantovani “Localizations and completions of stable ∞\infty∞-categories”, 2021 arXiv:2105.02285 [math.CT]
  34. Harvey Margolis “Spectra and the Steenrod algebra” Elsevier, 1983
  35. Haynes R Miller “On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space” In Journal of Pure and Applied Algebra 20.3 North-Holland, 1981, pp. 287–312
  36. John Palmieri “Stable homotopy over the Steenrod algebra” American Mathematical Soc., 2001
  37. Piotr Pstrągowski “Synthetic spectra and the cellular motivic category” In Inventiones mathematicae Springer, 2022, pp. 1–129
  38. Douglas C Ravenel “The structure of B⁢P*⁢B⁢P𝐵subscript𝑃𝐵𝑃BP_{*}BPitalic_B italic_P start_POSTSUBSCRIPT * end_POSTSUBSCRIPT italic_B italic_P modulo an invariant prime ideal” In Topology 15.2 Elsevier, 1976, pp. 149–153
  39. Douglas C Ravenel “Complex cobordism and stable homotopy groups of spheres” American Mathematical Soc., 2003
  40. Guozhen Wang “Computations of the Adams-Novikov E2subscript𝐸2E_{2}italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-term” In Chinese Ann. Math. Ser. B 42.4, 2021, pp. 551–560 DOI: 10.1007/s11401-021-0277-2
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 8 likes.

Upgrade to Pro to view all of the tweets about this paper: