Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Mechanism in a Dynamic Stochastic Knapsack Environment (2402.14269v1)

Published 22 Feb 2024 in cs.GT, econ.GN, and q-fin.EC

Abstract: This study introduces an optimal mechanism in a dynamic stochastic knapsack environment. The model features a single seller who has a fixed quantity of a perfectly divisible item. Impatient buyers with a piece-wise linear utility function arrive randomly and they report the two-dimensional private information: marginal value and demanded quantity. We derive a revenue-maximizing dynamic mechanism in a finite discrete time framework that satisfies incentive compatibility, individual rationality, and feasibility conditions. It is achieved by characterizing buyers' utility and deriving the Bellman equation. Moreover, we propose the essential penalty scheme for incentive compatibility, as well as the allocation and payment policies. Lastly, we propose algorithms to approximate the optimal policy, based on the Monte Carlo simulation-based regression method and reinforcement learning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.