New Mass Window for Primordial Black Holes as Dark Matter from Memory Burden Effect (2402.14069v1)
Abstract: The mass ranges allowed for Primordial Black Holes (PBHs) to constitute all of Dark Matter (DM) are broadly constrained. However, these constraints rely on the standard semiclassical approximation which assumes that the evaporation process is self-similar. Quantum effects such as memory burden take the evaporation process out of the semiclassical regime latest by half-decay time. What happens beyond this time is currently not known. However, theoretical evidence based on prototype models indicates that the evaporation slows down thereby extending the lifetime of a black hole. This modifies the mass ranges constrained, in particular, by BBN and CMB spectral distortions. We show that previous constraints are largely relaxed when the PBH lifetime is extended, making it possible for PBHs to constitute all of DM in previously excluded mass ranges. In particular, this is the case for PBHs lighter than $109$g which enter the memory burden stage before BBN and are still present today as DM.
- Y. B. Zel’dovich and I. D. Novikov Sov. Astron. 10 (1967) 602.
- S. Hawking Mon. Not. Roy. Astron. Soc. 152 (1971) 75.
- B. J. Carr and S. W. Hawking Mon. Not. Roy. Astron. Soc. 168 (1974) 399–415.
- G. F. Chapline Nature 253 no. 5489, (1975) 251–252.
- B. Carr and F. Kuhnel Ann. Rev. Nucl. Part. Sci. 70 (2020) 355–394, arXiv:2006.02838 [astro-ph.CO].
- S. W. Hawking Nature 248 (1974) 30–31.
- G. Dvali and C. Gomez Fortsch. Phys. 61 (2013) 742–767, arXiv:1112.3359 [hep-th].
- G. Dvali and C. Gomez Eur. Phys. J. C 74 (2014) 2752, arXiv:1207.4059 [hep-th].
- G. Dvali and C. Gomez JCAP 01 (2014) 023, arXiv:1312.4795 [hep-th].
- G. Dvali Fortsch. Phys. 64 (2016) 106–108, arXiv:1509.04645 [hep-th].
- D. N. Page Phys. Rev. Lett. 71 (1993) 3743–3746, arXiv:hep-th/9306083.
- G. Dvali arXiv:1810.02336 [hep-th].
- B. V. Vainer and P. D. Naselskii Soviet Astronomy Letters 3 (Apr., 1977) 76–78.
- P. D. Naselskii and N. V. Pelikhov Astronomicheskii Zhurnal 56 (Aug., 1979) 714.
- S. Miyama and K. Sato Prog. Theor. Phys. 59 (1978) 1012.
- K. Kohri and J. Yokoyama Phys. Rev. D 61 (2000) 023501, arXiv:astro-ph/9908160.
- V. Thoss et al. In preparation (2024) .
- G. Dvali arXiv:2103.15668 [hep-th].
- G. Dvali Fortsch. Phys. 58 (2010) 528–536, arXiv:0706.2050 [hep-th].
- G. Dvali and M. Redi Phys. Rev. D 77 (2008) 045027, arXiv:0710.4344 [hep-th].
- G. Dvali Int. J. Mod. Phys. A 25 (2010) 602–615, arXiv:0806.3801 [hep-th].
- G. Dvali and C. Gomez Phys. Lett. B 674 (2009) 303–307, arXiv:0812.1940 [hep-th].
- R. Ruffini and J. A. Wheeler Phys. Today 24 no. 1, (1971) 30.
- C. Teitelboim Lett. Nuovo Cim. 3S2 (1972) 326–328.
- J. B. Hartle Phys. Rev. D 3 (1971) 2938–2940.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.