Papers
Topics
Authors
Recent
2000 character limit reached

Two-dimensional Lorentz-violating Casimir effect (2402.13972v2)

Published 21 Feb 2024 in hep-th, gr-qc, and hep-ph

Abstract: In this study, we consider the four-dimensional Maxwell electrodynamics extended with CPT-even Myers-Pospelov Lorentz-violating dimension-six operators to investigate the associated two-dimensional properties in the context of quantum vacuum fluctuation effects, namely, the Casimir effect. Upon projecting out the 4D theory down to a 2D theory we obtain analogs of these operators leading to a modified dispersion relation in a Lorentz invariance violation (LIV) scalar model equivalent to the electromagnetic theory. By making use of the modified dispersion relation, we derive exact analytic expressions for the Casimir energy and force induced by imposing Dirichlet boundary conditions on the scalar field. In the regime where the LIV parameter becomes very small, we recover known results for the Casimir energy and force plus correction terms due to the LIV.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. D. Colladay and V. A. Kostelecky, “Lorentz violating extension of the standard model,” Phys. Rev. D, vol. 58, no. 359, p. 116002, 1998.
  2. S. M. Carroll and H. Tam, “Aether Compactification,” Phys. Rev. D, vol. 78, p. 044047, 2008.
  3. P. Horava, “Quantum Gravity at a Lifshitz Point,” Phys. Rev. D, vol. 79, p. 084008, 2009.
  4. M. Pospelov and Y. Shang, “On Lorentz violation in Horava-Lifshitz type theories,” Phys. Rev. D, vol. 85, p. 105001, 2012.
  5. H. Belich, Jr., M. M. Ferreira, Jr., J. A. Helayel-Neto, and M. T. D. Orlando, “Dimensional reduction of a Lorentz and CPT violating Chern-Simons model,” Phys. Rev. D, vol. 67, p. 125011, 2003. [Erratum: Phys.Rev.D 69, 109903 (2004)].
  6. D. Bazeia and R. Menezes, “Defect structures in Lorentz and CPT violating scenarios,” Phys. Rev. D, vol. 73, p. 065015, 2006.
  7. D. Bazeia, M. M. Ferreira, A. R. Gomes, and R. Menezes, “Lorentz-violating effects on topological defects generated by two real scalar fields,” Physica D, vol. 239, pp. 942–947, 2010.
  8. E. Passos and A. Y. Petrov, “Two-dimensional Lorentz-violating Chern-Simons-like action,” Phys. Lett. B, vol. 662, pp. 441–444, 2008. [Erratum: Phys.Lett.B 664, 318 (2008)].
  9. A. d. Souza Dutra and R. A. C. Correa, “Traveling solitons in Lorentz and CPT breaking systems,” Phys. Rev. D, vol. 83, p. 105007, 2011.
  10. R. Casana, E. S. Carvalho, and M. M. Ferreira, Jr, “Dimensional reduction of the CPT-even electromagnetic sector of the Standard Model Extension,” Phys. Rev. D, vol. 84, p. 045008, 2011.
  11. F. A. Brito, M. S. Guimaraes, E. Passos, P. Sampaio, and C. Wotzasek, “The 4D-2D projection of Lorentz-violating Myers-Pospelov QED,” Phys. Rev. D, vol. 86, p. 105036, 2012.
  12. E. Passos, C. A. G. Almeida, F. A. Brito, R. Menezes, J. C. Mota-Silva, and J. R. L. Santos, “Soliton solutions in two-dimensional Lorentz-violating higher derivative scalar theory,” Annals Phys., vol. 396, pp. 351–370, 2018.
  13. R. C. Myers and M. Pospelov, “Ultraviolet modifications of dispersion relations in effective field theory,” Phys. Rev. Lett., vol. 90, p. 211601, 2003.
  14. S. Liberati and L. Maccione, “Lorentz Violation: Motivation and new constraints,” Ann. Rev. Nucl. Part. Sci., vol. 59, pp. 245–267, 2009.
  15. H. B. G. Casimir, “On the attraction between two perfectly conducting plates,” Indag. Math., vol. 10, no. 4, pp. 261–263, 1948.
  16. M. J. Sparnaay, “Measurements of attractive forces between flat plates,” Physica, vol. 24, pp. 751–764, 1958.
  17. S. K. Lamoreaux, “Demonstration of the Casimir force in the 0.6 to 6 micrometers range,” Phys. Rev. Lett., vol. 78, pp. 5–8, 1997. [Erratum: Phys.Rev.Lett. 81, 5475–5476 (1998)].
  18. U. Mohideen and A. Roy, “Precision measurement of the Casimir force from 0.1 to 0.9 micrometers,” Phys. Rev. Lett., vol. 81, pp. 4549–4552, 1998.
  19. G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, “Measurement of the Casimir force between parallel metallic surfaces,” Phys. Rev. Lett., vol. 88, p. 041804, 2002.
  20. I. J. Morales Ulion, E. R. Bezerra de Mello, and A. Y. Petrov, “Casimir effect in Horava–Lifshitz-like theories,” Int. J. Mod. Phys. A, vol. 30, no. 36, p. 1550220, 2015.
  21. R. A. Dantas, H. F. S. Mota, and E. R. Bezerra de Mello, “Bosonic Casimir Effect in an Aether-like Lorentz-Violating Scenario with Higher Order Derivatives,” Universe, vol. 9, no. 5, p. 241, 2023.
  22. A. Erdas, “Magnetic corrections to the fermionic Casimir effect in Horava-Lifshitz theories,” Int. J. Mod. Phys. A, vol. 38, no. 22n23, p. 2350117, 2023.
  23. A. A. Saharian, “The generalized abel-plana formula with applications to bessel functions and casimir effect,” arXiv preprint arXiv:0708.1187, 2007.
  24. Academic press, 2014.
  25. J. Ambjoern and S. Wolfram, “Properties of the vacuum. i. mechanical and thermodynamic,” Annals of Physics, vol. 147, no. 1, pp. 1–32, 1983.
  26. M. Abramowitz, I. A. Stegun, and R. H. Romer, “Handbook of mathematical functions with formulas, graphs, and mathematical tables,” 1988.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 5 likes about this paper.