Papers
Topics
Authors
Recent
Search
2000 character limit reached

Evaluating Ground State Energies of Chemical Systems with Low-Depth Quantum Circuits and High Accuracy

Published 21 Feb 2024 in quant-ph | (2402.13960v1)

Abstract: Solving electronic structure problems is considered one of the most promising applications of quantum computing. However, due to limitations imposed by the coherence time of qubits in the Noisy Intermediate Scale Quantum (NISQ) era or the capabilities of early fault-tolerant quantum devices, it is vital to design algorithms with low-depth circuits. In this work, we develop an enhanced Variational Quantum Eigensolver (VQE) ansatz based on the Qubit Coupled Cluster (QCC) approach, which demands optimization over only $n$ parameters rather than the usual $n+2m$ parameters, where $n$ represents the number of Pauli string time evolution gates $e{-itP}$, and $m$ is the number of qubits involved. We evaluate the ground state energies of $\mathrm{O_3}$, $\mathrm{Li_4}$, and $\mathrm{Cr_2}$, using CAS(2,2), (4,4) and (6,6) respectively in conjunction with our enhanced QCC ansatz, UCCSD (Unitary Coupled Cluster Single Double) ansatz, and canonical CCSD method as the active space solver, and compare with CASCI results. Finally, we assess our enhanced QCC ansatz on two distinct quantum hardware, IBM Kolkata and Quantinuum H1-1.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. R. J. Bartlett, S. A. Kucharski, and J. Noga, Alternative coupled-cluster ansätze II. The unitary coupled-cluster method, Chem. Phys. Lett. 155, 133 (1989).
  2. M. A. Filip and A. J. W. Thom, A stochastic approach to unitary coupled cluster, J. Chem. Phys. 153, 214106 (2020).
  3. K. Mitarai, T. Yan, and K. Fujii, Generalization of the Output of a Variational Quantum Eigensolver by Parameter Interpolation with a Low-depth Ansatz, Phys. Rev. Appl. 11, 044087 (2019).
  4. G. E. Crooks, Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition, arXiv.1905.13311 10.48550/arXiv.1905.13311 (2019).
  5. M. Ostaszewski, E. Grant, and M. Benedetti, Structure optimization for parameterized quantum circuits, Quantum 5, 391 (2021).
  6. A. F. Izmaylov, R. A. Lang, and T.-C. Yen, Analytic gradients in variational quantum algorithms: Algebraic extensions of the parameter-shift rule to general unitary transformations, Phys. Rev. A 104, 062443 (2021).
  7. T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic-Structure Theory (Wiley, 2014).
  8. P. Jordan and E. Wigner, über das paulische äquivalenzverbot, Zeitschrift für Physik 47, 631 (1928).
  9. S. B. Bravyi and A. Y. Kitaev, Fermionic quantum computation, Annals of Physics 298, 210 (2002).
  10. J. T. Seeley, M. J. Richard, and P. J. Love, The Bravyi-Kitaev transformation for quantum computation of electronic structure, J. Chem. Phys. 137, 224109 (2012).
  11. A. Szabo and N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover Publications, 1996) page 40 - 45.
  12. T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys. 90, 1007 (1989).
  13. Qiskit contributors, Qiskit: An open-source framework for quantum computing (2023).
  14. N. C. Rubin, R. Babbush, and J. McClean, Application of fermionic marginal constraints to hybrid quantum algorithms, New J. Phys. 20, 053020 (2018).
  15. I. Hamamura and T. Imamichi, Efficient evaluation of quantum observables using entangled measurements, npj Quantum Inf 6, 1 (2020).
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.