Measurement of energy correlators inside jets and determination of the strong coupling $α_\mathrm{S}(m_\mathrm{Z})$ (2402.13864v2)
Abstract: Energy correlators that describe energy-weighted distances between two or three particles in a jet are measured using an event sample of $\sqrt{s}$ = 13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb${-1}$. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading logarithmic accuracy matched to a next-to-leading order calculation, the strong coupling is determined at the Z boson mass: $\alpha_\mathrm{S}(m_\mathrm{Z})$ = 0.1229 ${+0.0040}_{-0.0050}$, the most precise $\alpha_\mathrm{S}(m_\mathrm{Z})$ value obtained using jet substructure observables.
- ATLAS Collaboration, “Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector”, Phys. Rev. Lett. 124 (2020) 222002, 10.1103/PhysRevLett.124.222002, arXiv:2004.03540.
- ATLAS Collaboration, “Measurement of jet fragmentation in 5.02 TeV proton-lead and proton-proton collisions with the ATLAS detector”, Nucl. Phys. A 978 (2018) 65, 10.1016/j.nuclphysa.2018.07.006, arXiv:1706.02859.
- ATLAS Collaboration, “Measurement of soft-drop jet observables in \Pp\Pp\Pp\Pp\Pp\Pp collisions with the ATLAS detector at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. D 101 (2020) 052007, 10.1103/PhysRevD.101.052007, arXiv:1912.09837.
- CMS Collaboration, “Study of quark and gluon jet substructure in Z+jet and dijet events from pp collisions”, JHEP 01 (2022) 188, 10.1007/JHEP01(2022)188, arXiv:2109.03340.
- CMS Collaboration, “Measurement of the splitting function in \Pp\Pp\Pp\Pp\Pp\Pp and Pb-Pb collisions at sNN=subscript𝑠𝑁𝑁absent\sqrt{s_{NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. Lett. 120 (2018) 142302, 10.1103/PhysRevLett.120.142302, arXiv:1708.09429.
- CMS Collaboration, “Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 11 (2018) 113, 10.1007/JHEP11(2018)113, arXiv:1807.05974.
- ALICE Collaboration, “Measurements of the groomed and ungroomed jet angularities in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 5.02 TeV”, JHEP 05 (2022) 061, 10.1007/JHEP05(2022)061, arXiv:2107.11303.
- ALICE Collaboration, “Measurement of the groomed jet radius and momentum splitting fraction in pp and Pb−--Pb collisions at sNN=5.02subscript𝑠𝑁𝑁5.02\sqrt{s_{NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. Lett. 128 (2022) 102001, 10.1103/PhysRevLett.128.102001, arXiv:2107.12984.
- ALICE Collaboration, “Direct observation of the dead-cone effect in quantum chromodynamics”, Nature 605 (2022) 440, 10.1038/s41586-022-04572-w, arXiv:2106.05713. [Erratum: \DOI10.1038/s41586-022-05026-z].
- LHCb Collaboration, “Measurement of charged hadron production in Z𝑍Zitalic_Z-tagged jets in proton-proton collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV”, Phys. Rev. Lett. 123 (2019) 232001, 10.1103/PhysRevLett.123.232001, arXiv:1904.08878.
- H. Chen, I. Moult, X. Y. Zhang, and H. X. Zhu, “Rethinking jets with energy correlators: tracks, resummation, and analytic continuation”, Phys. Rev. D 102 (2020) 054012, 10.1103/PhysRevD.102.054012, arXiv:2004.11381.
- G. P. Salam, “Towards Jetography”, Eur. Phys. J. C 67 (2010) 637, 10.1140/epjc/s10052-010-1314-6, arXiv:0906.1833.
- N. A. Sveshnikov and F. V. Tkachov, “Jets and quantum field theory”, Phys. Lett. B 382 (1996) 403, 10.1016/0370-2693(96)00558-8, arXiv:hep-ph/9512370.
- A. V. Belitsky et al., “From correlation functions to event shapes”, Nucl. Phys. B 884 (2014) 305, 10.1016/j.nuclphysb.2014.04.020, arXiv:1309.0769.
- A. V. Belitsky et al., “Event shapes in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 super-Yang-Mills theory”, Nucl. Phys. B 884 (2014) 206, 10.1016/j.nuclphysb.2014.04.019, arXiv:1309.1424.
- M. Kologlu, P. Kravchuk, D. Simmons-Duffin, and A. Zhiboedov, “The light-ray OPE and conformal colliders”, JHEP 01 (2021) 128, 10.1007/JHEP01(2021)128, arXiv:1905.01311.
- L. J. Dixon, I. Moult, and H. X. Zhu, “Collinear limit of the energy-energy correlator”, Phys. Rev. D 100 (2019) 014009, 10.1103/PhysRevD.100.014009, arXiv:1905.01310.
- K. Lee, B. Meçaj, and I. Moult, “Conformal colliders meet the LHC”, 2022. arXiv:2205.03414.
- W. Chen et al., “NNLL resummation for projected three-point energy correlator”, 2023. arXiv:2307.07510.
- J. R. Andersen et al., “Les Houches 2017: Physics at TeV colliders standard model working group report”, in Proc. Standard Model Working Group of the 2017 Les Houches Workshop. 2018. arXiv:1803.07977.
- G. P. Salam, “The strong coupling: a theoretical perspective”, CERN theory report CERN-TH-2017-268, 2017. 10.1142/9789813238053_0007, arXiv:1712.05165.
- S. Moch et al., “High precision fundamental constants at the TeV scale”, 2014. arXiv:1405.4781.
- M. LeBlanc, B. Nachman, and C. Sauer, “Going off topics to demix quark and gluon jets in α𝛼\alphaitalic_αS𝑆{}_{S}start_FLOATSUBSCRIPT italic_S end_FLOATSUBSCRIPT extractions”, JHEP 02 (2023) 150, 10.1007/JHEP02(2023)150, arXiv:2206.10642.
- Particle Data Group, R. L. Workman et al., “Review of particle physics”, Prog. Theor. Exp. Phys. 2022 (2022) 083C01, 10.1093/ptep/ptac097. and 2023 update.
- ATLAS Collaboration, “A precise determination of the strong-coupling constant from the recoil of Z𝑍Zitalic_Z bosons with the ATLAS experiment at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV”, 2023. arXiv:2309.12986. Submitted to Nature Phys.
- CMS Collaboration, “Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 02 (2022) 142, 10.1007/JHEP02(2022)142, arXiv:2111.10431. [Addendum: \DOI10.1007/JHEP12(2022)035].
- ATLAS Collaboration, “Determination of the strong coupling constant from transverse energy−--energy correlations in multijet events at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, JHEP 07 (2023) 085, 10.1007/JHEP07(2023)085, arXiv:2301.09351.
- CMS Collaboration, “Measurement of the tt¯t¯t\mathrm{t}\overline{\mathrm{t}}roman_t over¯ start_ARG roman_t end_ARG production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 79 (2019) 368, 10.1140/epjc/s10052-019-6863-8, arXiv:1812.10505.
- D. d’Enterria and A. Poldaru, “Extraction of the strong coupling \alpS(m\PZ)\alpSsubscript𝑚\PZ\alpS(m_{\PZ})( italic_m start_POSTSUBSCRIPT end_POSTSUBSCRIPT ) from a combined NNLO analysis of inclusive electroweak boson cross sections at hadron colliders”, JHEP 06 (2020) 016, 10.1007/JHEP06(2020)016, arXiv:1912.11733.
- T. Klijnsma, S. Bethke, G. Dissertori, and G. P. Salam, “Determination of the strong coupling constant \alpS(m\PZ)\alpSsubscript𝑚\PZ\alpS(m_{\PZ})( italic_m start_POSTSUBSCRIPT end_POSTSUBSCRIPT ) from measurements of the total cross section for top-antitop quark production”, Eur. Phys. J. C 77 (2017) 778, 10.1140/epjc/s10052-017-5340-5, arXiv:1708.07495.
- R. Abbate et al., “Thrust at N3LLsuperscriptN3LL\text{N}^{3}\text{LL}N start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT LL with power corrections and a precision global fit for \alpS(m\PZ)\alpSsubscript𝑚\PZ\alpS(m_{\PZ})( italic_m start_POSTSUBSCRIPT end_POSTSUBSCRIPT )”, Phys. Rev. D 83 (2011) 074021, 10.1103/PhysRevD.83.074021, arXiv:1006.3080.
- T. Gehrmann, G. Luisoni, and P. F. Monni, “Power corrections in the dispersive model for a determination of the strong coupling constant from the thrust distribution”, Eur. Phys. J. C 73 (2013) 2265, 10.1140/epjc/s10052-012-2265-x, arXiv:1210.6945.
- A. H. Hoang, D. W. Kolodrubetz, V. Mateu, and I. W. Stewart, “Precise determination of \alpS\alpS\alpS from the C𝐶Citalic_C-parameter distribution”, Phys. Rev. D 91 (2015) 094018, 10.1103/PhysRevD.91.094018, arXiv:1501.04111.
- CMS Collaboration, “Measurement of jet substructure observables in tt¯t¯t\mathrm{t\overline{t}}roman_t over¯ start_ARG roman_t end_ARG events from proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. D 98 (2018) 092014, 10.1103/PhysRevD.98.092014, arXiv:1808.07340.
- PLUTO Collaboration, “Energy-energy correlations in \EEannihilation into hadrons”, Phys. Lett. B 99 (1981) 292, 10.1016/0370-2693(81)91128-X.
- F. Gross et al., “50 Years of quantum chromodynamics”, Eur. Phys. J. C 83 (2023) 1125, 10.1140/epjc/s10052-023-11949-2, arXiv:2212.11107.
- V. N. Gribov and L. N. Lipatov, “Deep inelastic ep scattering in perturbation theory”, Sov. J. Nucl. Phys. 15 (1972) 438.
- Y. L. Dokshitzer, “Calculation of the structure functions for deep inelastic scattering and \EE\EE\EE annihilation by perturbation theory in quantum chromodynamics.”, Sov. Phys. JETP 46 (1977) 641.
- G. Marchesini, “QCD coherence in the structure function and associated distributions at small x”, Nucl. Phys. B 445 (1995) 49, 10.1016/0550-3213(95)00149-M, arXiv:hep-ph/9412327.
- G. Altarelli and G. Parisi, “Asymptotic freedom in parton language”, Nucl. Phys. B 126 (1977) 298, 10.1016/0550-3213(77)90384-4.
- CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV in 2015 and 2016 at CMS”, Eur. Phys. J. C 81 (2021) 800, 10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.
- CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
- CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
- CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
- CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021) P05014, 10.1088/1748-0221/16/05/P05014, arXiv:2012.06888.
- CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
- CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, JINST 9 (2014) P10009, 10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.
- CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV using the CMS detector”, JINST 14 (2019) P07004, 10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.
- CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
- M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\ktjet clustering algorithm”, JHEP 04 (2008) 063, 10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
- M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, 10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
- CMS Collaboration, “Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid”, CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015.
- CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, 10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.
- G. D’Agostini, “A multidimensional unfolding method based on Bayes’ theorem”, Nucl. Instrum. Meth. A 362 (1995) 487, 10.1016/0168-9002(95)00274-X.
- T. Adye, “Unfolding algorithms and tests using RooUnfold”, in PHYSTAT 2011, p. 313. CERN, Geneva, 2011. arXiv:1105.1160. 10.5170/CERN-2011-006.313.
- L. Brenner et al., “Comparison of unfolding methods using RooFitUnfold”, Int. J. Mod. Phys. A 35 (2020) 2050145, 10.1142/S0217751X20501456, arXiv:1910.14654.
- T. Sjöstrand et al., “An introduction to \PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
- M. Bahr et al., “\HERWIG++ physics and manual”, Eur. Phys. J. C 58 (2008) 639, 10.1140/epjc/s10052-008-0798-9, arXiv:0803.0883.
- J. Bellm et al., “\HERWIG7.0/\HERWIG++ 3.0 release note”, Eur. Phys. J. C 76 (2016) 196, 10.1140/epjc/s10052-016-4018-8, arXiv:1512.01178.
- J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, 10.1007/JHEP07(2014)079, arXiv:1405.0301.
- J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, 10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569.
- GEANT4 Collaboration, “\GEANTfour—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
- NNPDF Collaboration, “Parton distributions for the LHC Run II”, JHEP 04 (2015) 040, 10.1007/JHEP04(2015)040, arXiv:1410.8849.
- CMS Collaboration, “Extraction and validation of a new set of CMS \PYTHIA8\PYTHIA8\PYTHIA{8}8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, 10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
- CMS Collaboration, “Development and validation of \HERWIG7 tunes from CMS underlying-event measurements”, Eur. Phys. J. C 81 (2021) 312, 10.1140/epjc/s10052-021-08949-5, arXiv:2011.03422.
- CMS Collaboration, “Pileup mitigation at CMS in 13\TeVdata”, JINST 15 (2020) P09018, 10.1088/1748-0221/15/09/P09018, arXiv:2003.00503.
- N. Fischer, S. Prestel, M. Ritzmann, and P. Skands, “vincia for hadron colliders”, Eur. Phys. J. C 76 (2016) 589, 10.1140/epjc/s10052-016-4429-6, arXiv:1605.06142.
- S. Höche and S. Prestel, “The midpoint between dipole and parton showers”, Eur. Phys. J. C 75 (2015) 461, 10.1140/epjc/s10052-015-3684-2, arXiv:1506.05057.
- Sherpa Collaboration, “Event generation with \SHERPA 2.2”, SciPost Phys. 7 (2019) 034, 10.21468/SciPostPhys.7.3.034, arXiv:1905.09127.
- “Supplemental material: Additional analysis figures”. [URL will be inserted by publisher at publication].
- HEPData record for this analysis, 2024. 10.17182/hepdata.147275.
- S. Mrenna and P. Skands, “Automated parton-shower variations in \PYTHIA8\PYTHIA8\PYTHIA 88”, Phys. Rev. D 94 (2016) 074005, 10.1103/PhysRevD.94.074005, arXiv:1605.08352.
- P. Skands, S. Carrazza, and J. Rojo, “Tuning \PYTHIA8.1: the Monash 2013 tune”, Eur. Phys. J. C 74 (2014) 3024, 10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630.
- P. T. Komiske, I. Moult, J. Thaler, and H. X. Zhu, “Analyzing n-point energy correlators inside jets with CMS open data”, Phys. Rev. Lett. 130 (2023) 051901, 10.1103/PhysRevLett.130.051901, arXiv:2201.07800.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.