Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 53 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Measurement of energy correlators inside jets and determination of the strong coupling $α_\mathrm{S}(m_\mathrm{Z})$ (2402.13864v2)

Published 21 Feb 2024 in hep-ex

Abstract: Energy correlators that describe energy-weighted distances between two or three particles in a jet are measured using an event sample of $\sqrt{s}$ = 13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb${-1}$. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading logarithmic accuracy matched to a next-to-leading order calculation, the strong coupling is determined at the Z boson mass: $\alpha_\mathrm{S}(m_\mathrm{Z})$ = 0.1229 ${+0.0040}_{-0.0050}$, the most precise $\alpha_\mathrm{S}(m_\mathrm{Z})$ value obtained using jet substructure observables.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. ATLAS Collaboration, “Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector”, Phys. Rev. Lett. 124 (2020) 222002, 10.1103/PhysRevLett.124.222002, arXiv:2004.03540.
  2. ATLAS Collaboration, “Measurement of jet fragmentation in 5.02 TeV proton-lead and proton-proton collisions with the ATLAS detector”, Nucl. Phys. A 978 (2018) 65, 10.1016/j.nuclphysa.2018.07.006, arXiv:1706.02859.
  3. ATLAS Collaboration, “Measurement of soft-drop jet observables in \Pp⁢\Pp\Pp\Pp\Pp\Pp collisions with the ATLAS detector at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. D 101 (2020) 052007, 10.1103/PhysRevD.101.052007, arXiv:1912.09837.
  4. CMS Collaboration, “Study of quark and gluon jet substructure in Z+jet and dijet events from pp collisions”, JHEP 01 (2022) 188, 10.1007/JHEP01(2022)188, arXiv:2109.03340.
  5. CMS Collaboration, “Measurement of the splitting function in \Pp⁢\Pp\Pp\Pp\Pp\Pp and Pb-Pb collisions at sN⁢N=subscript𝑠𝑁𝑁absent\sqrt{s_{NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. Lett. 120 (2018) 142302, 10.1103/PhysRevLett.120.142302, arXiv:1708.09429.
  6. CMS Collaboration, “Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 11 (2018) 113, 10.1007/JHEP11(2018)113, arXiv:1807.05974.
  7. ALICE Collaboration, “Measurements of the groomed and ungroomed jet angularities in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 5.02 TeV”, JHEP 05 (2022) 061, 10.1007/JHEP05(2022)061, arXiv:2107.11303.
  8. ALICE Collaboration, “Measurement of the groomed jet radius and momentum splitting fraction in pp and Pb−--Pb collisions at sN⁢N=5.02subscript𝑠𝑁𝑁5.02\sqrt{s_{NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. Lett. 128 (2022) 102001, 10.1103/PhysRevLett.128.102001, arXiv:2107.12984.
  9. ALICE Collaboration, “Direct observation of the dead-cone effect in quantum chromodynamics”, Nature 605 (2022) 440, 10.1038/s41586-022-04572-w, arXiv:2106.05713. [Erratum: \DOI10.1038/s41586-022-05026-z].
  10. LHCb Collaboration, “Measurement of charged hadron production in Z𝑍Zitalic_Z-tagged jets in proton-proton collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV”, Phys. Rev. Lett. 123 (2019) 232001, 10.1103/PhysRevLett.123.232001, arXiv:1904.08878.
  11. H. Chen, I. Moult, X. Y. Zhang, and H. X. Zhu, “Rethinking jets with energy correlators: tracks, resummation, and analytic continuation”, Phys. Rev. D 102 (2020) 054012, 10.1103/PhysRevD.102.054012, arXiv:2004.11381.
  12. G. P. Salam, “Towards Jetography”, Eur. Phys. J. C 67 (2010) 637, 10.1140/epjc/s10052-010-1314-6, arXiv:0906.1833.
  13. N. A. Sveshnikov and F. V. Tkachov, “Jets and quantum field theory”, Phys. Lett. B 382 (1996) 403, 10.1016/0370-2693(96)00558-8, arXiv:hep-ph/9512370.
  14. A. V. Belitsky et al., “From correlation functions to event shapes”, Nucl. Phys. B 884 (2014) 305, 10.1016/j.nuclphysb.2014.04.020, arXiv:1309.0769.
  15. A. V. Belitsky et al., “Event shapes in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 super-Yang-Mills theory”, Nucl. Phys. B 884 (2014) 206, 10.1016/j.nuclphysb.2014.04.019, arXiv:1309.1424.
  16. M. Kologlu, P. Kravchuk, D. Simmons-Duffin, and A. Zhiboedov, “The light-ray OPE and conformal colliders”, JHEP 01 (2021) 128, 10.1007/JHEP01(2021)128, arXiv:1905.01311.
  17. L. J. Dixon, I. Moult, and H. X. Zhu, “Collinear limit of the energy-energy correlator”, Phys. Rev. D 100 (2019) 014009, 10.1103/PhysRevD.100.014009, arXiv:1905.01310.
  18. K. Lee, B. Meçaj, and I. Moult, “Conformal colliders meet the LHC”, 2022. arXiv:2205.03414.
  19. W. Chen et al., “NNLL resummation for projected three-point energy correlator”, 2023. arXiv:2307.07510.
  20. J. R. Andersen et al., “Les Houches 2017: Physics at TeV colliders standard model working group report”, in Proc. Standard Model Working Group of the 2017 Les Houches Workshop. 2018. arXiv:1803.07977.
  21. G. P. Salam, “The strong coupling: a theoretical perspective”, CERN theory report CERN-TH-2017-268, 2017. 10.1142/9789813238053_0007, arXiv:1712.05165.
  22. S. Moch et al., “High precision fundamental constants at the TeV scale”, 2014. arXiv:1405.4781.
  23. M. LeBlanc, B. Nachman, and C. Sauer, “Going off topics to demix quark and gluon jets in α𝛼\alphaitalic_αS𝑆{}_{S}start_FLOATSUBSCRIPT italic_S end_FLOATSUBSCRIPT extractions”, JHEP 02 (2023) 150, 10.1007/JHEP02(2023)150, arXiv:2206.10642.
  24. Particle Data Group, R. L. Workman et al., “Review of particle physics”, Prog. Theor. Exp. Phys. 2022 (2022) 083C01, 10.1093/ptep/ptac097. and 2023 update.
  25. ATLAS Collaboration, “A precise determination of the strong-coupling constant from the recoil of Z𝑍Zitalic_Z bosons with the ATLAS experiment at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV”, 2023. arXiv:2309.12986. Submitted to Nature Phys.
  26. CMS Collaboration, “Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 02 (2022) 142, 10.1007/JHEP02(2022)142, arXiv:2111.10431. [Addendum: \DOI10.1007/JHEP12(2022)035].
  27. ATLAS Collaboration, “Determination of the strong coupling constant from transverse energy−--energy correlations in multijet events at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, JHEP 07 (2023) 085, 10.1007/JHEP07(2023)085, arXiv:2301.09351.
  28. CMS Collaboration, “Measurement of the t⁢t¯t¯t\mathrm{t}\overline{\mathrm{t}}roman_t over¯ start_ARG roman_t end_ARG production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 79 (2019) 368, 10.1140/epjc/s10052-019-6863-8, arXiv:1812.10505.
  29. D. d’Enterria and A. Poldaru, “Extraction of the strong coupling \alpS⁢(m\PZ)\alpSsubscript𝑚\PZ\alpS(m_{\PZ})( italic_m start_POSTSUBSCRIPT end_POSTSUBSCRIPT ) from a combined NNLO analysis of inclusive electroweak boson cross sections at hadron colliders”, JHEP 06 (2020) 016, 10.1007/JHEP06(2020)016, arXiv:1912.11733.
  30. T. Klijnsma, S. Bethke, G. Dissertori, and G. P. Salam, “Determination of the strong coupling constant \alpS⁢(m\PZ)\alpSsubscript𝑚\PZ\alpS(m_{\PZ})( italic_m start_POSTSUBSCRIPT end_POSTSUBSCRIPT ) from measurements of the total cross section for top-antitop quark production”, Eur. Phys. J. C 77 (2017) 778, 10.1140/epjc/s10052-017-5340-5, arXiv:1708.07495.
  31. R. Abbate et al., “Thrust at N3⁢LLsuperscriptN3LL\text{N}^{3}\text{LL}N start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT LL with power corrections and a precision global fit for \alpS⁢(m\PZ)\alpSsubscript𝑚\PZ\alpS(m_{\PZ})( italic_m start_POSTSUBSCRIPT end_POSTSUBSCRIPT )”, Phys. Rev. D 83 (2011) 074021, 10.1103/PhysRevD.83.074021, arXiv:1006.3080.
  32. T. Gehrmann, G. Luisoni, and P. F. Monni, “Power corrections in the dispersive model for a determination of the strong coupling constant from the thrust distribution”, Eur. Phys. J. C 73 (2013) 2265, 10.1140/epjc/s10052-012-2265-x, arXiv:1210.6945.
  33. A. H. Hoang, D. W. Kolodrubetz, V. Mateu, and I. W. Stewart, “Precise determination of \alpS\alpS\alpS from the C𝐶Citalic_C-parameter distribution”, Phys. Rev. D 91 (2015) 094018, 10.1103/PhysRevD.91.094018, arXiv:1501.04111.
  34. CMS Collaboration, “Measurement of jet substructure observables in t⁢t¯t¯t\mathrm{t\overline{t}}roman_t over¯ start_ARG roman_t end_ARG events from proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. D 98 (2018) 092014, 10.1103/PhysRevD.98.092014, arXiv:1808.07340.
  35. PLUTO Collaboration, “Energy-energy correlations in \EEannihilation into hadrons”, Phys. Lett. B 99 (1981) 292, 10.1016/0370-2693(81)91128-X.
  36. F. Gross et al., “50 Years of quantum chromodynamics”, Eur. Phys. J. C 83 (2023) 1125, 10.1140/epjc/s10052-023-11949-2, arXiv:2212.11107.
  37. V. N. Gribov and L. N. Lipatov, “Deep inelastic ep scattering in perturbation theory”, Sov. J. Nucl. Phys. 15 (1972) 438.
  38. Y. L. Dokshitzer, “Calculation of the structure functions for deep inelastic scattering and \EE\EE\EE annihilation by perturbation theory in quantum chromodynamics.”, Sov. Phys. JETP 46 (1977) 641.
  39. G. Marchesini, “QCD coherence in the structure function and associated distributions at small x”, Nucl. Phys. B 445 (1995) 49, 10.1016/0550-3213(95)00149-M, arXiv:hep-ph/9412327.
  40. G. Altarelli and G. Parisi, “Asymptotic freedom in parton language”, Nucl. Phys. B 126 (1977) 298, 10.1016/0550-3213(77)90384-4.
  41. CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV in 2015 and 2016 at CMS”, Eur. Phys. J. C 81 (2021) 800, 10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.
  42. CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
  43. CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
  44. CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
  45. CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021) P05014, 10.1088/1748-0221/16/05/P05014, arXiv:2012.06888.
  46. CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
  47. CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, JINST 9 (2014) P10009, 10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.
  48. CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV using the CMS detector”, JINST 14 (2019) P07004, 10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.
  49. CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
  50. M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\ktjet clustering algorithm”, JHEP 04 (2008) 063, 10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
  51. M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, 10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
  52. CMS Collaboration, “Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid”, CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015.
  53. CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, 10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.
  54. G. D’Agostini, “A multidimensional unfolding method based on Bayes’ theorem”, Nucl. Instrum. Meth. A 362 (1995) 487, 10.1016/0168-9002(95)00274-X.
  55. T. Adye, “Unfolding algorithms and tests using RooUnfold”, in PHYSTAT 2011, p. 313. CERN, Geneva, 2011. arXiv:1105.1160. 10.5170/CERN-2011-006.313.
  56. L. Brenner et al., “Comparison of unfolding methods using RooFitUnfold”, Int. J. Mod. Phys. A 35 (2020) 2050145, 10.1142/S0217751X20501456, arXiv:1910.14654.
  57. T. Sjöstrand et al., “An introduction to \PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
  58. M. Bahr et al., “\HERWIG++ physics and manual”, Eur. Phys. J. C 58 (2008) 639, 10.1140/epjc/s10052-008-0798-9, arXiv:0803.0883.
  59. J. Bellm et al., “\HERWIG7.0/\HERWIG++ 3.0 release note”, Eur. Phys. J. C 76 (2016) 196, 10.1140/epjc/s10052-016-4018-8, arXiv:1512.01178.
  60. J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, 10.1007/JHEP07(2014)079, arXiv:1405.0301.
  61. J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, 10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569.
  62. GEANT4 Collaboration, “\GEANTfour—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
  63. NNPDF Collaboration, “Parton distributions for the LHC Run II”, JHEP 04 (2015) 040, 10.1007/JHEP04(2015)040, arXiv:1410.8849.
  64. CMS Collaboration, “Extraction and validation of a new set of CMS \PYTHIA⁢8\PYTHIA8\PYTHIA{8}8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, 10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
  65. CMS Collaboration, “Development and validation of \HERWIG7 tunes from CMS underlying-event measurements”, Eur. Phys. J. C 81 (2021) 312, 10.1140/epjc/s10052-021-08949-5, arXiv:2011.03422.
  66. CMS Collaboration, “Pileup mitigation at CMS in 13\TeVdata”, JINST 15 (2020) P09018, 10.1088/1748-0221/15/09/P09018, arXiv:2003.00503.
  67. N. Fischer, S. Prestel, M. Ritzmann, and P. Skands, “vincia for hadron colliders”, Eur. Phys. J. C 76 (2016) 589, 10.1140/epjc/s10052-016-4429-6, arXiv:1605.06142.
  68. S. Höche and S. Prestel, “The midpoint between dipole and parton showers”, Eur. Phys. J. C 75 (2015) 461, 10.1140/epjc/s10052-015-3684-2, arXiv:1506.05057.
  69. Sherpa Collaboration, “Event generation with \SHERPA 2.2”, SciPost Phys. 7 (2019) 034, 10.21468/SciPostPhys.7.3.034, arXiv:1905.09127.
  70. “Supplemental material: Additional analysis figures”. [URL will be inserted by publisher at publication].
  71. HEPData record for this analysis, 2024. 10.17182/hepdata.147275.
  72. S. Mrenna and P. Skands, “Automated parton-shower variations in \PYTHIA⁢8\PYTHIA8\PYTHIA 88”, Phys. Rev. D 94 (2016) 074005, 10.1103/PhysRevD.94.074005, arXiv:1605.08352.
  73. P. Skands, S. Carrazza, and J. Rojo, “Tuning \PYTHIA8.1: the Monash 2013 tune”, Eur. Phys. J. C 74 (2014) 3024, 10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630.
  74. P. T. Komiske, I. Moult, J. Thaler, and H. X. Zhu, “Analyzing n-point energy correlators inside jets with CMS open data”, Phys. Rev. Lett. 130 (2023) 051901, 10.1103/PhysRevLett.130.051901, arXiv:2201.07800.
Citations (24)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 16 likes.

Upgrade to Pro to view all of the tweets about this paper: