Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A quadratically convergent semismooth Newton method for nonlinear semidefinite programming without generalized Jacobian regularity (2402.13814v2)

Published 21 Feb 2024 in math.OC

Abstract: We introduce a quadratically convergent semismooth Newton method for nonlinear semidefinite programming that eliminates the need for the generalized Jacobian regularity, a common yet stringent requirement in existing approaches. Our strategy involves identifying a single nonsingular element within the Bouligand generalized Jacobian, thus avoiding the standard requirement for nonsingularity across the entire generalized Jacobian set, which is often too restrictive for practical applications. The theoretical framework is supported by introducing the weak second order condition (W-SOC) and the weak strict Robinson constraint qualification (W-SRCQ). These conditions not only guarantee the existence of a nonsingular element in the generalized Jacobian but also forge a primal-dual connection in linearly constrained convex quadratic programming. The theoretical advancements further lay the foundation for the algorithmic design of a novel semismooth Newton method, which integrates a correction step to address degenerate issues. Particularly, this correction step ensures the local convergence as well as a superlinear/quadratic convergence rate of the proposed method. Preliminary numerical experiments corroborate our theoretical findings and underscore the practical effectiveness of our method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.