Papers
Topics
Authors
Recent
2000 character limit reached

Resilience of Hund's rule in the Chemical Space of Small Organic Molecules (2402.13801v4)

Published 21 Feb 2024 in physics.chem-ph

Abstract: We embark on a quest to identify small molecules in the chemical space that can potentially violate Hund's rule. Utilizing twelve TDDFT approximations and the ADC(2) many-body method, we report the energies of S$_1$ and T$_1$ excited states of 12,880 closed-shell organic molecules within the bigQM7$\omega$ dataset with up to 7 CONF atoms. In this comprehensive dataset, none of the molecules, in their minimum energy geometry, exhibit a negative S$_1$-T$_1$ energy gap at the ADC($2$) level while several molecules display values $<0.1$ eV. The spin-component-scaled double-hybrid method, SCS-PBE-QIDH, demonstrates the best agreement with ADC(2). Yet, at this level, a few molecules with a strained $sp3$-N center turn out as false-positives with the S$_1$ state lower in energy than T$_1$. We investigate a prototypical cage molecule with an energy gap $<-0.2$ eV, which a closer examination revealed as another false positive. We conclude that in the chemical space of small closed-shell organic molecules, it is possible to identify geometric and electronic structural features giving rise to S$_1$-T$_1$ degeneracy; still, there is no evidence of a negative gap. We share the dataset generated for this study as a module, to facilitate seamless molecular discovery through data mining.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. H. Kollmar and V. Staemmler, Theor. Chim. Acta 48, 223 (1978).
  2. A. Toyota and T. Nakajima, J. Chem. Soc., Perkin trans. , 1731 (1986).
  3. A. Toyota, Theor. Chim. Acta 74, 209 (1988).
  4. D. A. Hrovat and W. T. Borden, J. Mol. Struct. (THEOCHEM) 398, 211 (1997).
  5. W. Leupin and J. Wirz, J. Am. Chem. Soc. 102, 6068 (1980).
  6. V. Bonacic-Koutecky and J. Michl, J. Am. Chem. Soc. 107, 1765 (1985).
  7. P. de Silva, J. Phys. Chem. Lett. 10, 5674 (2019).
  8. A. L. Sobolewski and W. Domcke, The Journal of Physical Chemistry Letters 12, 6852 (2021).
  9. A. Dreuw and M. Hoffmann, Front. Chem. 11 (2023).
  10. S. Ghosh and K. Bhattacharyya, J. Phys. Chem. A. 126, 1378 (2022).
  11. M. Kondo, Chem. Phys. Lett. 804, 139895 (2022).
  12. M. C. Paez and L. Goerigk,   (2021).
  13. M. Alipour and T. Izadkhast, J. Chem. Phys. 156 (2022).
  14. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).
  15. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
  16. J.-D. Chai and M. Head-Gordon, Physical Chemistry Chemical Physics 10, 6615 (2008).
  17. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012).
  18. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1327 (2018).
  19. R. A. Kendall and H. A. Früchtl, Theor. Chim. Acta 97, 158 (1997).
  20. F. Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 54 likes about this paper.