Resilience of Hund's rule in the Chemical Space of Small Organic Molecules (2402.13801v4)
Abstract: We embark on a quest to identify small molecules in the chemical space that can potentially violate Hund's rule. Utilizing twelve TDDFT approximations and the ADC(2) many-body method, we report the energies of S$_1$ and T$_1$ excited states of 12,880 closed-shell organic molecules within the bigQM7$\omega$ dataset with up to 7 CONF atoms. In this comprehensive dataset, none of the molecules, in their minimum energy geometry, exhibit a negative S$_1$-T$_1$ energy gap at the ADC($2$) level while several molecules display values $<0.1$ eV. The spin-component-scaled double-hybrid method, SCS-PBE-QIDH, demonstrates the best agreement with ADC(2). Yet, at this level, a few molecules with a strained $sp3$-N center turn out as false-positives with the S$_1$ state lower in energy than T$_1$. We investigate a prototypical cage molecule with an energy gap $<-0.2$ eV, which a closer examination revealed as another false positive. We conclude that in the chemical space of small closed-shell organic molecules, it is possible to identify geometric and electronic structural features giving rise to S$_1$-T$_1$ degeneracy; still, there is no evidence of a negative gap. We share the dataset generated for this study as a module, to facilitate seamless molecular discovery through data mining.
- H. Kollmar and V. Staemmler, Theor. Chim. Acta 48, 223 (1978).
- A. Toyota and T. Nakajima, J. Chem. Soc., Perkin trans. , 1731 (1986).
- A. Toyota, Theor. Chim. Acta 74, 209 (1988).
- D. A. Hrovat and W. T. Borden, J. Mol. Struct. (THEOCHEM) 398, 211 (1997).
- W. Leupin and J. Wirz, J. Am. Chem. Soc. 102, 6068 (1980).
- V. Bonacic-Koutecky and J. Michl, J. Am. Chem. Soc. 107, 1765 (1985).
- P. de Silva, J. Phys. Chem. Lett. 10, 5674 (2019).
- A. L. Sobolewski and W. Domcke, The Journal of Physical Chemistry Letters 12, 6852 (2021).
- A. Dreuw and M. Hoffmann, Front. Chem. 11 (2023).
- S. Ghosh and K. Bhattacharyya, J. Phys. Chem. A. 126, 1378 (2022).
- M. Kondo, Chem. Phys. Lett. 804, 139895 (2022).
- M. C. Paez and L. Goerigk,  (2021).
- M. Alipour and T. Izadkhast, J. Chem. Phys. 156 (2022).
- T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).
- C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
- J.-D. Chai and M. Head-Gordon, Physical Chemistry Chemical Physics 10, 6615 (2008).
- F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012).
- F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1327 (2018).
- R. A. Kendall and H. A. Früchtl, Theor. Chim. Acta 97, 158 (1997).
- F. Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.