Papers
Topics
Authors
Recent
2000 character limit reached

Worldline path integral for the massive graviton

Published 21 Feb 2024 in hep-th | (2402.13766v2)

Abstract: We compute the counterterms necessary for the renormalization of the one-loop effective action of massive gravity from a worldline perspective. This is achieved by employing the recently proposed massive $\mathcal{N}=4$ spinning particle model to describe the propagation of the massive graviton on those backgrounds that solve the Einstein equations without cosmological constant, namely on Ricci-flat manifolds, in four dimensions. The model is extended to be consistent in $D$ spacetime dimensions by relaxing the gauging of the full SO(4) R-symmetry group to a parabolic subgroup, together with the inclusion of a suitable Chern-Simons term. Then, constructing the worldline path integral on the one-dimensional torus allows for the correct calculation of the one-loop divergencies in arbitrary $D$ dimensions. Our primary contribution is the determination of the Seleey-DeWitt coefficients up to the fourth coefficient $a_3(D)$, which to our knowledge has never been reported in the literature. Its calculation is generally laborious on the quantum field theory side, as a general formula for these coefficients is not available for operators that are non-minimal in the heat kernel sense. This work illustrates the computational efficiency of worldline methods in this regard. Heat kernel coefficients characterize linearized massive gravity in a gauge-independent manner due to the on-shell condition of the background on which the graviton propagates. They could serve as a benchmark for verifying alternative approaches to massive gravity, and, for this reason, their precise expression should be known explicitly.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. M. Fierz “Force-free particles with any spin” In Helv. Phys. Acta 12, 1939, pp. 3–37
  2. “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field” In Proc. Roy. Soc. Lond. A 173, 1939, pp. 211–232 DOI: 10.1098/rspa.1939.0140
  3. “Generalization of the Fierz-Pauli Action” In Phys. Rev. D 82, 2010, pp. 044020 DOI: 10.1103/PhysRevD.82.044020
  4. Claudia Rham, Gregory Gabadadze and Andrew J. Tolley “Resummation of Massive Gravity” In Phys. Rev. Lett. 106, 2011, pp. 231101 DOI: 10.1103/PhysRevLett.106.231101
  5. Claudia Rham, Gregory Gabadadze and Andrew J. Tolley “Ghost free Massive Gravity in the Stückelberg language” In Phys. Lett. B 711, 2012, pp. 190–195 DOI: 10.1016/j.physletb.2012.03.081
  6. I.L. Buchbinder, D.D. Pereira and I.L. Shapiro “One-loop divergences in massive gravity theory” In Phys. Lett. B 712, 2012, pp. 104–108 DOI: 10.1016/j.physletb.2012.04.045
  7. Claudia Rham, Lavinia Heisenberg and Raquel H. Ribeiro “Quantum Corrections in Massive Gravity” In Phys. Rev. D 88, 2013, pp. 084058 DOI: 10.1103/PhysRevD.88.084058
  8. Gerard ’t Hooft and M.J.G. Veltman “One loop divergencies in the theory of gravitation” In Ann. Inst. H. Poincare Phys. Theor. A 20, 1974, pp. 69–94
  9. P. Van Nieuwenhuizen “On the renormalization of quantum gravitation without matter” In Annals Phys. 104, 1977, pp. 197–217 DOI: 10.1016/0003-4916(77)90051-3
  10. R. Critchley “Trace anomaly for gravitons” In Phys. Rev. D 18, 1978, pp. 1849–1855 DOI: 10.1103/PhysRevD.18.1849
  11. “Quantizing gravity with a cosmological constant” In Nucl. Phys. B 170, 1980, pp. 480–506 DOI: 10.1016/0550-3213(80)90423-X
  12. “Equations of motion for massive spin-2 field coupled to gravity” In Nucl. Phys. B 584, 2000, pp. 615–640 DOI: 10.1016/S0550-3213(00)00389-8
  13. “Massive and massless Yang-Mills and gravitational fields” In Nucl. Phys. B 22, 1970, pp. 397–411 DOI: 10.1016/0550-3213(70)90416-5
  14. V.I. Zakharov “Linearized gravitation theory and the graviton mass” In JETP Lett. 12, 1970, pp. 312
  15. “Quantum discontinuity between zero and infinitesimal graviton mass with a Lambda term” In Phys. Rev. Lett. 87, 2001, pp. 041301 DOI: 10.1103/PhysRevLett.87.041301
  16. Renata Ferrero, Markus B. Fröb and William C.C. Lima “Heat kernel coefficients for massive gravity”, 2023 arXiv:2312.10816 [hep-th]
  17. “Particle spin dynamics as the Grassmann variant of classical mechanics” In Annals Phys. 104, 1977, pp. 336 DOI: 10.1016/0003-4916(77)90335-9
  18. “Classical and quantum dynamics of particles with arbitrary spins” In JETP Lett. 29, 1979, pp. 288–291
  19. “Wave equations for arbitrary spin from quantization of the extended supersymmetric spinning particle” In Phys. Lett. B 215, 1988, pp. 555–558 DOI: 10.1016/0370-2693(88)91358-5
  20. Peng Dai, Yu-tin Huang and Warren Siegel “Worldgraph Approach to Yang-Mills Amplitudes from N=2 Spinning Particle” In JHEP 10, 2008, pp. 027 DOI: 10.1088/1126-6708/2008/10/027
  21. R. Bonezzi, A. Meyer and I. Sachs “Einstein gravity from the 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 spinning particle” In JHEP 10, 2018, pp. 025 DOI: 10.1007/JHEP10(2018)025
  22. Filippo Fecit “Massive gravity from a first-quantized perspective”, 2023 arXiv:2312.15428 [hep-th]
  23. Fiorenzo Bastianelli, Paolo Benincasa and Simone Giombi “Worldline approach to vector and antisymmetric tensor fields. II.” In JHEP 10, 2005, pp. 114 DOI: 10.1088/1126-6708/2005/10/114
  24. “Massive and massless higher spinning particles in odd dimensions” In JHEP 09, 2014, pp. 158 DOI: 10.1007/JHEP09(2014)158
  25. “One-loop quantum gravity from the 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 spinning particle” In JHEP 11, 2019, pp. 124 DOI: 10.1007/JHEP11(2019)124
  26. “Worldline path integrals and quantum field theory”, Cambridge Monographs on Mathematical Physics Cambridge University Press, to appear
  27. Joel Scherk and John H. Schwarz “How to Get Masses from Extra Dimensions” In Nucl. Phys. B 153, 1979, pp. 61–88 DOI: 10.1016/0550-3213(79)90592-3
  28. E.C.G. Stueckelberg “Theory of the radiation of photons of small arbitrary mass” In Helv. Phys. Acta 30, 1957, pp. 209–215
  29. “Consistent deformations of free massive field theories in the Stueckelberg formulation” In JHEP 07, 2018, pp. 021 DOI: 10.1007/JHEP07(2018)021
  30. Fiorenzo Bastianelli, Olindo Corradini and Emanuele Latini “Higher spin fields from a worldline perspective” In JHEP 02, 2007, pp. 072 DOI: 10.1088/1126-6708/2007/02/072
  31. “Feynman Diagrams for the Yang-Mills Field” In Phys. Lett. B 25, 1967, pp. 29–30 DOI: 10.1016/0370-2693(67)90067-6
  32. Fiorenzo Bastianelli, Paolo Benincasa and Simone Giombi “Worldline approach to vector and antisymmetric tensor fields” In JHEP 04, 2005, pp. 010 DOI: 10.1088/1126-6708/2005/04/010
  33. F. Bastianelli, O. Corradini and A. Waldron “Detours and Paths: BRST Complexes and Worldline Formalism” In JHEP 05, 2009, pp. 017 DOI: 10.1088/1126-6708/2009/05/017
  34. “Path integrals and anomalies in curved space”, Cambridge Monographs on Mathematical Physics Cambridge University Press, 2006 DOI: 10.1017/CBO9780511535031
  35. Fiorenzo Bastianelli, Olindo Corradini and Emanuele Latini “Spinning particles and higher spin fields on (A)dS backgrounds” In JHEP 11, 2008, pp. 054 DOI: 10.1088/1126-6708/2008/11/054
  36. “Six-dimensional one-loop divergences in quantum gravity from the 𝒩𝒩\mathcal{N}caligraphic_N = 4 spinning particle” In JHEP 10, 2023, pp. 152 DOI: 10.1007/JHEP10(2023)152
  37. “Extended SUSY quantum mechanics: transition amplitudes and path integrals” In JHEP 06, 2011, pp. 023 DOI: 10.1007/JHEP06(2011)023
  38. “On integral relations for invariants constructed from three Riemann tensors and their applications in quantum gravity” In J. Math. Phys. 18, 1977, pp. 182 DOI: 10.1063/1.523128
  39. Roberto Bonezzi, Adiel Meyer and Ivo Sachs “A Worldline Theory for Supergravity” In JHEP 06, 2020, pp. 103 DOI: 10.1007/JHEP06(2020)103
  40. “Worldline approach to noncommutative field theory” In J. Phys. A 45, 2012, pp. 405401 DOI: 10.1088/1751-8113/45/40/405401
  41. “Worldline Formalism in Snyder Spaces” In Phys. Rev. D 98.6, 2018, pp. 065010 DOI: 10.1103/PhysRevD.98.065010
  42. “U(N) spinning particles and higher spin equations on complex manifolds” In JHEP 03, 2009, pp. 063 DOI: 10.1088/1126-6708/2009/03/063
  43. Fiorenzo Bastianelli, Roberto Bonezzi and Carlo Iazeolla “Quantum theories of (p,q)-forms” In JHEP 08, 2012, pp. 045 DOI: 10.1007/JHEP08(2012)045
Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.