Weak Poincaré inequality comparisons for ideal and hybrid slice sampling
Abstract: Using the framework of weak Poincar{\'e} inequalities, we provide a general comparison between the Hybrid and Ideal Slice Sampling Markov chains in terms of their Dirichlet forms. In particular, under suitable assumptions Hybrid Slice Sampling will inherit fast convergence from Ideal Slice Sampling and conversely. We apply our results to analyse the convergence of the Independent Metropolis--Hastings, Slice Sampling with Stepping-Out and Shrinkage, and Hit-and-Run-within-Slice Sampling algorithms.
- Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers. Bernoulli, 24(2):842–872, 2018. doi: 10.3150/15-BEJ785.
- Comparison of Markov chains via weak Poincaré inequalities with application to pseudo-marginal MCMC. The Annals of Statistics, 50(6):3592–3618, 2022a.
- Poincaré inequalities for Markov chains: a meeting with Cheeger, Lyapunov and Metropolis. Technical report, University of Bristol, 2022b. URL https://arxiv.org/abs/2208.05239v1.
- Explicit convergence bounds for Metropolis Markov chains: isoperimetry, spectral gaps and profiles. 2022c. doi: 10.48550/arxiv.2211.08959. URL https://arxiv.org/abs/2211.08959v1.
- Weak Poincaré Inequalities for Markov chains: theory and applications. 2023. URL https://arxiv.org/abs/2312.11689v1.
- Peter H. Baxendale. Renewal theory and computable convergence rates for geometrically ergodic Markov chains. The Annals of Applied Probability, 15(1B):700–738, 2005. ISSN 1050-5164. doi: 10.1214/105051604000000710.
- Fast MCMC sampling algorithms on polytopes. The Journal of Machine Learning Research, 19(1):2146–2231, 2018.
- Sinho Chewi. Log-concave sampling. Book draft available at https://chewisinho. github. io, 2023.
- MCMC methods for functions: modifying old algorithms to make them faster. Statistical Science, 28(3):424–446, 2013.
- Markov Chains. Springer International Publishing, 1 edition, 2018. ISBN 978-3-319-97703-4. doi: 10.1007/978-3-319-97704-1.
- Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika, 102(2):295–313, 2015. ISSN 14643510. doi: 10.1093/biomet/asu075.
- Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. Physical Review D, 38(6):2009, sep 1988. ISSN 05562821. doi: 10.1103/PhysRevD.38.2009.
- Jørund Gåsemyr. The Spectrum of the Independent Metropolis–Hastings Algorithm. Journal of Theoretical Probability, 19(1):152–165, apr 2006. ISSN 1572-9230. doi: 10.1007/S10959-006-0009-2.
- Geometric ergodicity of Metropolis algorithms. Stochastic Processes and their Applications, 85(2):341–361, 2000. ISSN 0304-4149. doi: 10.1016/S0304-4149(99)00082-4.
- Fritz John. Extremum problems with inequalities as subsidiary conditions. Traces and emergence of nonlinear programming, pages 197–215, 2014.
- Random walks on polytopes and an affine interior point method for linear programming. In Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 561–570, 2009.
- Convergence of Gibbs sampling: Coordinate Hit-and-Run mixes fast. Discrete & Computational Geometry, pages 1–20, 2023.
- Convergence of hybrid slice sampling via spectral gap. 2014. URL https://arxiv.org/abs/1409.2709.
- Bounds on the l2superscript𝑙2l^{2}italic_l start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality. Transactions of the American mathematical society, 309(2):557–580, 1988.
- Geodesic walks in polytopes. SIAM Journal on Computing, 51(2):STOC17–400, 2022.
- Hit-and-run from a corner. Conference Proceedings of the Annual ACM Symposium on Theory of Computing, pages 310–314, 2004. ISSN 07349025. doi: 10.1145/1007352.1007403.
- Rates of convergence of the Hastings and Metropolis algorithms. The Annals of Statistics, 24(1):101–121, 1996.
- Efficiency and Convergence Properties of Slice Samplers. Scandinavian Journal of Statistics, 29(1):1–12, 2002.
- Elliptical slice sampling. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, 2010.
- Quantitative spectral gap estimate and Wasserstein contraction of simple slice sampling. Ann. Appl. Probab., 31(2):806–825, 2021. ISSN 1050-5164. doi: 10.1214/20-AAP1605.
- Radford M Neal. Slice sampling. The Annals of Statistics, 31(3):705–767, 2003.
- Yann Ollivier. Ricci curvature of Markov chains on metric spaces. Journal of Functional Analysis, 256(3):810–864, 2009.
- Spectral gap bounds for reversible hybrid Gibbs chains. 2023. URL https://arxiv.org/abs/2312.12782v1.
- Monte Carlo statistical methods, volume 2. Springer, 1999.
- Geometric ergodicity and hybrid Markov chains. Electronic Communications in Probability, 2:13–25, 1997.
- The polar slice sampler. Stochastic Models, 18(2):257–280, 2002. ISSN 15326349. doi: 10.1081/STM-120004467.
- Spectral bounds for certain two-factor non-reversible MCMC algorithms. Electron. Commun. Probab, 20(91):1–10, 2015. ISSN 1083589X. doi: 10.1214/ECP.v20-4528.
- Dimension-independent spectral gap of polar slice sampling. Stat. Comput., 20(34), 2024.
- Robust random walk-like Metropolis-Hastings algorithms for concentrating posteriors. Technical report, 2022. URL https://arxiv.org/abs/2202.12127.
- Positivity of hit-and-run and related algorithms. Electron. Commun. Probab, 18(49):1–8, 2013. ISSN 1083589X. doi: 10.1214/ECP.v18-2507.
- Comparison of hit-and-run, slice sampler and random walk Metropolis. Journal of Applied Probability, 55(4):1186–1202, 2018. ISSN 0021-9002. doi: 10.1017/JPR.2018.78.
- Philip Schär. Wasserstein contraction and spectral gap of slice sampling revisited. 2023. URL https://arxiv.org/abs/2305.16984v1.
- Gibbsian polar slice sampling. 2023. URL https://arxiv.org/abs/2302.03945v2.
- Robert L. Smith. Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions. Operations Research, 32(6):1296–1308, 1984. ISSN 0030364X. doi: 10.1287/OPRE.32.6.1296.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.