Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coding Theorems for Repetition and Superposition Codes over Binary-Input Output-Symmetric Channels (2402.13603v1)

Published 21 Feb 2024 in cs.IT and math.IT

Abstract: This paper is concerned with a class of low density generator matrix codes (LDGM), called repetition and superposition (RaS) codes, which have been proved to be capacity-achieving over binary-input output-symmetric (BIOS) channels in terms of bit-error rate (BER). We prove with a recently proposed framework that the RaS codes are also capacity-achieving over BIOS channels in terms of frame-error rate (FER). With this new framework, the theorem for the RaS codes can be generalized to source coding and joint source and channel coding (JSCC). In particular, we prove with this framework that the corresponding low-density parity-check (LDPC) codes, as an enlarged ensemble of quasi-cyclic LDPC (QC-LDPC) codes, can also achieve the capacity. To further improve the iterative decoding performance, we consider the convolutional RaS (Conv-RaS) code ensemble and prove it to be capacity-achieving over BIOS channels in terms of the first error event probability. The construction of Conv-RaS codes is flexible with rate (defined as the ratio of the input length to the encoding output length) ranging from less than one (typically for channel codes) to greater than one (typically for source codes), which can be implemented as a universal JSCC scheme, as confirmed by simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.
  2. T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.
  3. T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.
  4. D. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.
  5. X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Regular and irregular progressive edge-growth tanner graphs,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 386–398, Jan. 2005.
  6. Y. Kou, S. Lin, and M. P. Fossorier, “Low-density parity-check codes based on finite geometries: a rediscovery and new results,” IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 2711–2736, Nov. 2001.
  7. M. P. Fossorier, “Quasicyclic low-density parity-check codes from circulant permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1788–1793, Aug. 2004.
  8. S. Song, B. Zhou, S. Lin, and K. Abdel-Ghaffar, “A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields,” IEEE Trans. Commun., vol. 57, no. 1, pp. 84–93, Jan. 2009.
  9. Q. Diao, J. Li, S. Lin, and I. F. Blake, “New classes of partial geometries and their associated LDPC codes,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 2947–2965, Jun. 2016.
  10. S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–1737, Oct. 2001.
  11. G. Liva and M. Chiani, “Protograph LDPC codes design based on EXIT analysis,” in IEEE GLOBECOM 2007 - IEEE Global Telecommun. Conf., 2007, pp. 3250–3254.
  12. N. Sourlas, “Spin-glass models as error-correcting codes,” Nature, vol. 339, no. 6227, pp. 693–695, Jun. 1989.
  13. J.-F. Cheng and R. J. McEliece, “Some high-rate near capacity codecs for the Gaussian channel,” in Proc. 34th Allerton Conf. Commun., Control Comput., vol. 34, Oct. 1996, pp. 494–503.
  14. M. Luby, “LT codes,” in Annu. IEEE Symp. Found. Comput. Sci., Vancouver, Canada, Nov. 2002, pp. 271–280.
  15. A. Montanari, “Tight bounds for LDPC and LDGM codes under MAP decoding,” IEEE Trans. Inf. Theory, vol. 51, no. 9, pp. 3221–3246, Sept. 2005.
  16. A. M. Kakhaki, H. K. Abadi, P. Pad, H. Saeedi, F. Marvasti, and K. Alishahi, “Capacity achieving linear codes with random binary sparse generating matrices over the binary symmetric channel,” in Proc.  Int. Symp. Inf. Theor. (ISIT), Jul. 2012, pp. 621–625.
  17. X. Ma, “Coding theorem for systematic low density generator matrix codes,” in Proc. 9th Int. Symp. Turbo Codes Iterative Inf. Process. (ISTC), Sept. 2016, pp. 11–15.
  18. S. Cai, W. Lin, X. Yao, B. Wei, and X. Ma, “Systematic convolutional low density generator matrix code,” IEEE Trans. Inf. Theory, vol. 67, no. 6, pp. 3752–3764, Jun. 2021.
  19. X. Ma, Y. Wang, and T. Zhu, “A new framework for proving coding theorems for linear codes,” in Proc.  Int. Symp. Inf. Theor. (ISIT), Jun. 2022, pp. 2768–2773.
  20. J. Garcia-Frias and W. Zhong, “Approaching Shannon performance by iterative decoding of linear codes with low-density generator matrix,” IEEE Commun. Lett., vol. 7, no. 6, pp. 266–268, Jun. 2003.
  21. M. Gonzalez-Lopez, F. J. Vazquez-Araujo, L. Castedo, and J. Garcia-Frias, “Serially-concatenated low-density generator matrix (SCLDGM) codes for transmission over AWGN and Rayleigh fading channels,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 2753–2758, Aug. 2007.
  22. A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2551–2567, Jun. 2006.
  23. A. Jimenez Felstrom and K. Zigangirov, “Time-varying periodic convolutional codes with low-density parity-check matrix,” IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 2181–2191, Sept. 1999.
  24. S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 803–834, Feb. 2011.
  25. ——, “Spatially coupled ensembles universally achieve capacity under belief propagation,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 7761–7813, Dec. 2013.
  26. S. Kumar, A. J. Young, N. Macris, and H. D. Pfister, “Threshold saturation for spatially coupled LDPC and LDGM codes on BMS channels,” IEEE Trans. Inf. Theory, vol. 60, no. 12, pp. 7389–7415, Dec. 2014.
  27. N. Shulman and M. Feder, “Random coding techniques for nonrandom codes,” IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 2101–2104, Sept. 1999.
  28. T. Cover, R. McEliece, and E. Posner, “Asynchronous multiple-access channel capacity,” IEEE Trans. Inf. Theory, vol. 27, no. 4, pp. 409–413, Jul. 1981.
  29. X. Ma, C. Liang, K. Huang, and Q. Zhuang, “Block Markov superposition transmission: Construction of big convolutional codes from short codes,” IEEE Trans. Inf. Theory, vol. 61, no. 6, pp. 3150–3163, Jun. 2015.
  30. N. Shulman and M. Feder, “Improved error exponent for time-invariant and periodically time-variant convolutional codes,” IEEE Trans. Inf. Theory, vol. 46, no. 1, pp. 97–103, Jan. 2000.
  31. Y. Wang and X. Ma, “On reliably decodable information bits of linear codes,” in Proc.  Int. Symp. Inf. Theor. (ISIT), Jun. 2023, pp. 608–612.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com