Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random Staircase Generator Matrix Codes: Performance Analysis and Construction (2402.16245v2)

Published 26 Feb 2024 in cs.IT and math.IT

Abstract: In this paper, we propose a class of codes, referred to as random staircase generator matrix codes (SGMCs), which have staircase-like generator matrices. In the infinite-length region, we prove that the random SGMC is capacity-achieving over binary-input output-symmetric (BIOS) channels. In the finite-length region, we present the representative ordered statistics decoding with local constraints (LC-ROSD) algorithm for the SGMCs. The most distinguished feature of the SGMCs with LC-ROSD is that the staircase-like matrices enable parallel implementation of the Gaussian elimination (GE), avoiding the serial GE of conventional OSD and supporting a potential low decoding latency, as implied from simulations. To analyze the performance of random SGMCs in the finite-length region, we derive the ensemble weight spectrum and invoke the conventional union bound. We also derive a partially random coding union (RCU) bound, which is tighter than the conventional one and is used as a criterion to design the SGMCs. Staircase-like generator matrices allow us to derive a series of (tighter and tighter) lower bounds based on the second-order Bonferroni inequality with the incremental number of codewords. The numerical results show that the decoding performance can match well with the proposed partially RCU bound for different code rates and different profiles. The numerical results also show that the tailored SGMCs with the LC-ROSD algorithm can approach the finite-length performance bound, outperforming the 5G low-density parity-check (LDPC) codes, 5G polar codes, and Reed-Muller (RM) codes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. I. T. Union, “Framework and overall objectives of the future development of imt of 2030 and beyond,” Tech. Rep., 2023.
  2. M. C. Coşkun, G. Durisi, T. Jerkovits, G. Liva, W. Ryan, B. Stein, and F. Steiner, “Efficient error-correcting codes in the short blocklength regime,” Phys. Commun., vol. 34, pp. 66–79, 2019.
  3. M. P. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics,” IEEE Trans. Inf. Theory, vol. 41, no. 5, pp. 1379–1396, 1995.
  4. X. Ma, “Guessing what, noise or codeword?” Submitted to IEEE Int. Symp. Inf. Theory, 2024.
  5. O.-S. Park, G. Y. Park, and Y. H. Lee, “Improvement of ordered statistics decoding for low-rate BCH codes,” in Proc. Int. Conf. Inf. Commun. Technol. Convergence, 2019, pp. 837–839.
  6. M. Jiang, C. Zhao, E. Xu, and L. Zhang, “Reliability-based iterative decoding of LDPC codes using likelihood accumulation,” IEEE Commun. Lett., vol. 11, no. 8, pp. 677–679, 2007.
  7. Y. Wei, M. Jiang, B. Xia, W. Chen, and Y. Yang, “A CRC-aided hybrid decoding algorithm for turbo codes,” IEEE Wireless Commun. Lett., vol. 2, no. 5, pp. 471–474, 2013.
  8. D. Wu, Y. Li, X. Guo, and Y. Sun, “Ordered statistic decoding for short polar codes,” IEEE Commun. Lett., vol. 20, no. 6, pp. 1064–1067, 2016.
  9. C. Yue, M. Shirvanimoghaddam, Y. Li, and B. Vucetic, “Segmentation-discarding ordered-statistic decoding for linear block codes,” in Proc. IEEE Global Commun. Conf., 2019, pp. 1–6.
  10. C. Yue, M. Shirvanimoghaddam, G. Park, O.-S. Park, B. Vucetic, and Y. Li, “Linear-equation ordered-statistics decoding,” IEEE Trans. Commun., vol. 70, no. 11, pp. 7105–7123, 2022.
  11. ——, “Probability-based ordered-statistics decoding for short block codes,” IEEE Commun. Lett., vol. 25, no. 6, pp. 1791–1795, 2021.
  12. Y. Wang, J. Liang, and X. Ma, “Local constraint-based ordered statistics decoding for short block codes,” in Proc. IEEE Inf. Theory Workshop, 2022, pp. 107–112.
  13. J. Liang, Y. Wang, S. Cai, and X. Ma, “A low-complexity ordered statistic decoding of short block codes,” IEEE Commun. Lett., vol. 27, no. 2, pp. 400–403, 2023.
  14. C. Choi and J. Jeong, “Fast soft decision decoding algorithm for linear block codes using permuted generator matrices,” IEEE Commun. Lett., vol. 25, no. 12, pp. 3775–3779, 2021.
  15. C. Yue, M. Shirvanimoghaddam, B. Vucetic, and Y. Li, “Ordered-statistics decoding with adaptive Gaussian elimination reduction for short codes,” in Proc. IEEE Global Commun. Conf. Workshop, 2022, pp. 492–497.
  16. L. Yang and L. Chen, “Low-latency ordered statistics decoding of BCH codes,” in Proc. IEEE Inf. Theory Workshop, 2022, pp. 404–409.
  17. X. Zheng, Q. Wang, B. Wei, and X. Ma, “Quasi-OSD of binary image of RS codes with applications to JSCC,” Submitted to IEEE Int. Symp. Inf. Theory, 2024.
  18. E. Arıkan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, 2009.
  19. I. S. Reed, “A class of multiple-error-correcting codes and the decoding scheme,” IRE Trans. Inform. Theory, vol. 4, no. 4, pp. 38–49, 1954.
  20. D. E. Muller, “Application of Boolean algebra to switching circuit design and to error detection,” IRE Trans. Electronic Computers,, vol. EC-3, no. 3, pp. 6–12, 1954.
  21. X. Ma, Y. Wang, and T. Zhu, “A new framework for proving coding theorems for linear codes,” in Proc. IEEE Int. Symp. Inf. Theory, 2022, pp. 2768–2773.
  22. N. Seshadri and C.-E. Sundberg, “List Viterbi decoding algorithms with applications,” IEEE Trans. Commun., vol. 42, no. 234, pp. 313–323, 1994.
  23. J. Liang and X. Ma, “A random coding approach to performance analysis of the ordered statistic decoding with local constraints,” arXiv preprint arXiv:2401.16709, 2024.
  24. Y. Wang, L. Jifan, Q. Wang, and X. Ma, “Representative ordered statistics decoding of staircase matrix codes,” submitted to IEEE Trans. Commun., 2023.
  25. X. Ma, J. Liu, and B. Bai, “New techniques for upper-bounding the ML decoding performance of binary linear codes,” IEEE Trans. Commun., vol. 61, no. 3, pp. 842–851, 2013.
  26. Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–2359, 2010.
  27. J. Font-Segura, G. Vazquez-Vilar, A. Martinez, A. G. i Fàbregas, and A. Lancho, “Saddlepoint approximations of lower and upper bounds to the error probability in channel coding,” in Proc. Conf. Inf. Sci. and Sys, 2018, pp. 1–6.
  28. A. Cohen and N. Merhav, “Lower bounds on the error probability of block codes based on improvements on de Caen’s inequality,” IEEE Trans. Inf. Theory, vol. 50, no. 2, pp. 290–310, 2004.
  29. X. Zheng, X. Yao, and X. Ma, “Performance analysis of maximum-likelihood decoding of polar codes,” in 7th Space Inf. Netw. Symp., 2023, accepted.
  30. F. M. Hoppe, “Iterating Bonferroni bounds,” Statistics & Probability Lett., vol. 3, no. 3, pp. 121–125, 1985.
  31. I. Sason and S. Shamai, “Performance analysis of linear codes under maximum-likelihood decoding: A tutorial,” Found. Trends Commun. Inf. Theory, vol. 3, no. 1–2, pp. 1–222, 2006.
Citations (3)

Summary

We haven't generated a summary for this paper yet.