Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-density graph codes that are optimal for source/channel coding and binning (0704.1818v1)

Published 13 Apr 2007 in cs.IT and math.IT

Abstract: We describe and analyze the joint source/channel coding properties of a class of sparse graphical codes based on compounding a low-density generator matrix (LDGM) code with a low-density parity check (LDPC) code. Our first pair of theorems establish that there exist codes from this ensemble, with all degrees remaining bounded independently of block length, that are simultaneously optimal as both source and channel codes when encoding and decoding are performed optimally. More precisely, in the context of lossy compression, we prove that finite degree constructions can achieve any pair $(R, D)$ on the rate-distortion curve of the binary symmetric source. In the context of channel coding, we prove that finite degree codes can achieve any pair $(C, p)$ on the capacity-noise curve of the binary symmetric channel. Next, we show that our compound construction has a nested structure that can be exploited to achieve the Wyner-Ziv bound for source coding with side information (SCSI), as well as the Gelfand-Pinsker bound for channel coding with side information (CCSI). Although the current results are based on optimal encoding and decoding, the proposed graphical codes have sparse structure and high girth that renders them well-suited to message-passing and other efficient decoding procedures.

Citations (12)

Summary

We haven't generated a summary for this paper yet.