Papers
Topics
Authors
Recent
2000 character limit reached

On-the-fly machine learned force fields for the study of warm dense matter: application to diffusion and viscosity of CH (2402.13450v1)

Published 21 Feb 2024 in physics.comp-ph and hep-th

Abstract: We develop a framework for on-the-fly machine learned force field (MLFF) molecular dynamics (MD) simulations of warm dense matter (WDM). In particular, we employ an MLFF scheme based on the kernel method and Bayesian linear regression, with the training data generated from Kohn-Sham density functional theory (DFT) using the Gauss Spectral Quadrature method, within which we calculate energies, atomic forces, and stresses. We verify the accuracy of the formalism by comparing the predicted properties of warm dense carbon with recent Kohn-Sham DFT results in the literature. In so doing, we demonstrate that ab initio MD simulations of WDM can be accelerated by up to three orders of magnitude, while retaining ab initio accuracy. We apply this framework to calculate the diffusion coefficients and shear viscosity of CH at a density of 1 g/cm$3$ and temperatures in the range of 75,000 to 750,000 K. We find that the self- and inter-diffusion coefficients as well as the viscosity obey a power law with temperature, and that the diffusion coefficient results suggest a weak coupling between C and H in CH. In addition, we find agreement within standard deviation with previous results for C and CH but disagreement for H, demonstrating the need for ab initio calculations as presented here.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.