Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Magnetotransport Signatures of the Radial Rashba Spin-Orbit Coupling in Proximitized Graphene (2402.13424v1)

Published 20 Feb 2024 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: Graphene-based van der Waals heterostructures take advantage of tailoring spin-orbit coupling (SOC) in the graphene layer by proximity effect. At long-wavelength -- saddled by the electronic states near the Dirac points -- the proximitized features can be effectively modelled by the Hamiltonian involving novel SOC terms and allow for an admixture of the tangential and radial spin textures -- by the so-called Rashba angle $\theta_{\text{R}}$. Taking such effective models we perform realistic large-scale magneto-transport calculations -- transverse magnetic focusing and Dyakonov-Perel spin relaxation -- and show that there are unique qualitative and quantitative features allowing for an unbiased experimental disentanglement of the conventional Rashba SOC from its novel radial counterpart, called here the radial Rashba SOC. Along with that, we propose a scheme for a direct estimation of the Rashba angle by exploring the magneto-response symmetries when swapping an in-plane magnetic field. To complete the story, we analyze the magneto-transport signatures in the presence of an emergent Dresselhaus SOC and also provide some generic ramifications about possible scenarios of the radial superconducting diode effect.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. M. Gmitra, D. Kochan, and J. Fabian, Phys. Rev. Lett. 110, 246602 (2013).
  2. A. M. Alsharari, M. M. Asmar, and S. E. Ulloa, Phys. Rev. B 94, 241106 (2016).
  3. D. Kochan, S. Irmer, and J. Fabian, Phys. Rev. B 95, 165415 (2017).
  4. K. Zollner, M. Gmitra, and J. Fabian, New J. Phys. 20, 073007 (2018).
  5. Y. Li and M. Koshino, Phys. Rev. B 99, 075438 (2019).
  6. A. Mreńca-Kolasińska, S.-C. Chen, and M.-H. Liu, npj 2D Materials and Applications 7, 1 (2023).
  7. M. I. D’yakonov and V. I. Perel’, Physics Letters A 35, 459 (1971).
  8. M. I. D’yakonov and V. I. Perel’, Soviet physics solid state, USSR 13, 3023 (1972).
  9. F. Meier and B. P. Zakharchenya, Optical orientation (Modern Problems in Condensed Matter Sciences vol 8) (Amsteradm, Elsevier, 1984).
  10. G. Dresselhaus, Phys. Rev. 100, 580 (1955).
  11. T. Frank and J. Fabian, Phys. Rev. B 102, 165416 (2020).
  12. See Supplemental Material for ….
  13. M. Barth, J. Fuchs, and D. Kochan, Phys. Rev. B 105, 205409 (2022).
  14. C. A. Mack, Appl. Opt. 52, 1472 (2013).
  15. As ℋRR*=ℋDsuperscriptsubscriptℋRRsubscriptℋD\mathcal{H}_{\text{RR}}^{*}=\mathcal{H}_{\text{D}}caligraphic_H start_POSTSUBSCRIPT RR end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = caligraphic_H start_POSTSUBSCRIPT D end_POSTSUBSCRIPT Dresselhaus plots follow from RR ones by swapping the sign of E𝐸Eitalic_E.
  16. V. M. Edelshtein, Sov. Phys. - JETP 68, 1244 (1989).
  17. N. F. Q. Yuan and L. Fu, Proc. Natl. Acad. Sci. USA 119, e2119548119 (2022).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.