Magnetotransport Signatures of the Radial Rashba Spin-Orbit Coupling in Proximitized Graphene (2402.13424v1)
Abstract: Graphene-based van der Waals heterostructures take advantage of tailoring spin-orbit coupling (SOC) in the graphene layer by proximity effect. At long-wavelength -- saddled by the electronic states near the Dirac points -- the proximitized features can be effectively modelled by the Hamiltonian involving novel SOC terms and allow for an admixture of the tangential and radial spin textures -- by the so-called Rashba angle $\theta_{\text{R}}$. Taking such effective models we perform realistic large-scale magneto-transport calculations -- transverse magnetic focusing and Dyakonov-Perel spin relaxation -- and show that there are unique qualitative and quantitative features allowing for an unbiased experimental disentanglement of the conventional Rashba SOC from its novel radial counterpart, called here the radial Rashba SOC. Along with that, we propose a scheme for a direct estimation of the Rashba angle by exploring the magneto-response symmetries when swapping an in-plane magnetic field. To complete the story, we analyze the magneto-transport signatures in the presence of an emergent Dresselhaus SOC and also provide some generic ramifications about possible scenarios of the radial superconducting diode effect.
- M. Gmitra, D. Kochan, and J. Fabian, Phys. Rev. Lett. 110, 246602 (2013).
- A. M. Alsharari, M. M. Asmar, and S. E. Ulloa, Phys. Rev. B 94, 241106 (2016).
- D. Kochan, S. Irmer, and J. Fabian, Phys. Rev. B 95, 165415 (2017).
- K. Zollner, M. Gmitra, and J. Fabian, New J. Phys. 20, 073007 (2018).
- Y. Li and M. Koshino, Phys. Rev. B 99, 075438 (2019).
- A. Mreńca-Kolasińska, S.-C. Chen, and M.-H. Liu, npj 2D Materials and Applications 7, 1 (2023).
- M. I. D’yakonov and V. I. Perel’, Physics Letters A 35, 459 (1971).
- M. I. D’yakonov and V. I. Perel’, Soviet physics solid state, USSR 13, 3023 (1972).
- F. Meier and B. P. Zakharchenya, Optical orientation (Modern Problems in Condensed Matter Sciences vol 8) (Amsteradm, Elsevier, 1984).
- G. Dresselhaus, Phys. Rev. 100, 580 (1955).
- T. Frank and J. Fabian, Phys. Rev. B 102, 165416 (2020).
- See Supplemental Material for ….
- M. Barth, J. Fuchs, and D. Kochan, Phys. Rev. B 105, 205409 (2022).
- C. A. Mack, Appl. Opt. 52, 1472 (2013).
- As ℋRR*=ℋDsuperscriptsubscriptℋRRsubscriptℋD\mathcal{H}_{\text{RR}}^{*}=\mathcal{H}_{\text{D}}caligraphic_H start_POSTSUBSCRIPT RR end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = caligraphic_H start_POSTSUBSCRIPT D end_POSTSUBSCRIPT Dresselhaus plots follow from RR ones by swapping the sign of E𝐸Eitalic_E.
- V. M. Edelshtein, Sov. Phys. - JETP 68, 1244 (1989).
- N. F. Q. Yuan and L. Fu, Proc. Natl. Acad. Sci. USA 119, e2119548119 (2022).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.