Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 136 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Thermodynamic Approach to Quantifying Incompatible Instruments (2402.13080v5)

Published 20 Feb 2024 in quant-ph

Abstract: We consider a thermodynamic framework to quantify instrument incompatibility via a resource theory subject to thermodynamic constraints. We use the minimal thermalisation time needed to erase incompatibility's signature to measure incompatibility. Unexpectedly, this time value is equivalent to incompatibility advantage in a work extraction task. Hence, both thermalisation time and extractable work can directly quantify instrument incompatibility. Finally, we show that incompatibility signatures must vanish in non-Markovian thermalisation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. P. Busch, P. Lahti, and R. F. Werner, Colloquium: Quantum root-mean-square error and measurement uncertainty relations, Rev. Mod. Phys. 86, 1261 (2014).
  2. C.-Y. Hsieh, R. Uola, and P. Skrzypczyk, Quantum complementarity: A novel resource for unambiguous exclusion and encryption, arXiv:2309.11968 .
  3. D. Cavalcanti and P. Skrzypczyk, Quantum steering: a review with focus on semidefinite programming, Rep. Prog. Phys. 80, 024001 (2016a).
  4. C.-Y. Hsieh, M. Lostaglio, and A. Acín, Quantum channel marginal problem, Phys. Rev. Res. 4, 013249 (2022a).
  5. P. Skrzypczyk, I. Šupić, and D. Cavalcanti, All sets of incompatible measurements give an advantage in quantum state discrimination, Phys. Rev. Lett. 122, 130403 (2019).
  6. R. Takagi and B. Regula, General resource theories in quantum mechanics and beyond: Operational characterization via discrimination tasks, Phys. Rev. X 9, 031053 (2019).
  7. C. Carmeli, T. Heinosaari, and A. Toigo, Quantum incompatibility witnesses, Phys. Rev. Lett. 122, 130402 (2019).
  8. S. Designolle, M. Farkas, and J. Kaniewski, Incompatibility robustness of quantum measurements: a unified framework, New J. Phys. 21, 113053 (2019).
  9. A. F. Ducuara and P. Skrzypczyk, Operational interpretation of weight-based resource quantifiers in convex quantum resource theories, Phys. Rev. Lett. 125, 110401 (2020).
  10. F. Buscemi, E. Chitambar, and W. Zhou, Complete resource theory of quantum incompatibility as quantum programmability, Phys. Rev. Lett. 124, 120401 (2020).
  11. A. Mitra and M. Farkas, Characterizing and quantifying the incompatibility of quantum instruments, Phys. Rev. A 107, 032217 (2023).
  12. T. Heinosaari, T. Miyadera, and M. Ziman, An invitation to quantum incompatibility, J. Phys. A: Math. Theor. 49, 123001 (2016).
  13. T. Heinosaari, T. Miyadera, and D. Reitzner, Strongly incompatible quantum devices, Found. Phys. 44, 34 (2014).
  14. K. Ji and E. Chitambar, Incompatibility as a resource for programmable quantum instruments, arXiv:2112.03717 .
  15. R. Landauer, Irreversibility and heat generation in the computing process, IBM J. Res. Dev. 5, 183 (1961).
  16. C.-Y. Hsieh, Quantifying classical information transmission by thermodynamics, arXiv:2201.12110 .
  17. Note that this is equivalent to the so-called progammable instrument, where the classical part cannot signal the quantum part (see Ref. [17] for details).
  18. M. Lostaglio, An introductory review of the resource theory approach to thermodynamics, Reports on Progress in Physics 82, 114001 (2019).
  19. R. Gallego and L. Aolita, Resource theory of steering, Phys. Rev. X 5, 041008 (2015).
  20. W. Roga, M. Fannes, and K. Życzkowski, Davies maps for qubits and qutrits, Reports on Mathematical Physics 66, 311 (2010).
  21. C.-Y. Hsieh, M. Lostaglio, and A. Acín, Entanglement preserving local thermalization, Phys. Rev. Res. 2, 013379 (2020).
  22. C.-Y. Hsieh, Resource preservability, Quantum 4, 244 (2020).
  23. J. Watrous, The Theory of Quantum Information (Cambridge University Press, 2018).
  24. P. Skrzypczyk and D. Cavalcanti, Semidefinite Programming in Quantum Information Science, 2053-2563 (IOP Publishing, 2023).
  25. Note that these operations are included in a recently proposed resource theory unifying different types of instrument incompatibility [17]; here, we focus on the so-called classical incompatibility defined in Ref. [17].
  26. B. Regula, Tight constraints on probabilistic convertibility of quantum states, Quantum 6, 817 (2022a).
  27. B. Regula, Probabilistic transformations of quantum resources, Phys. Rev. Lett. 128, 110505 (2022b).
  28. B. Regula and L. Lami, Reversibility of quantum resources through probabilistic protocols (2024), arXiv:2309.07206 .
  29. H.-Y. Ku, C.-Y. Hsieh, and C. Budroni, Measurement incompatibility cannot be stochastically distilled, arXiv:2308.02252 .
  30. C.-Y. Hsieh, H.-Y. Ku, and C. Budroni, Characterisation and fundamental limitations of irreversible stochastic steering distillation (2023), arXiv:2309.06191 .
  31. C.-Y. Hsieh and M. Gessner, General quantum resources provide advantages in work extraction tasks, in preparation .
  32. P. Skrzypczyk, A. J. Short, and S. Popescu, Work extraction and thermodynamics for individual quantum systems, Nat. Commun. 5, 4185 (2014).
  33. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th ed. (Cambridge University Press, 2010).
  34. M. Piani and J. Watrous, Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering, Phys. Rev. Lett. 114, 060404 (2015).
  35. D. P. Bertsekas, Convex Optimization Theory (Athena Scientific Belmont, 2009).
  36. L. Gurvits and H. Barnum, Largest separable balls around the maximally mixed bipartite quantum state, Phys. Rev. A 66, 062311 (2002).
  37. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).
  38. E. Haapasalo, Robustness of incompatibility for quantum devices, J. Phys. A: Math. Theor. 48, 255303 (2015).
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube