Thermodynamic Approach to Quantifying Incompatible Instruments (2402.13080v5)
Abstract: We consider a thermodynamic framework to quantify instrument incompatibility via a resource theory subject to thermodynamic constraints. We use the minimal thermalisation time needed to erase incompatibility's signature to measure incompatibility. Unexpectedly, this time value is equivalent to incompatibility advantage in a work extraction task. Hence, both thermalisation time and extractable work can directly quantify instrument incompatibility. Finally, we show that incompatibility signatures must vanish in non-Markovian thermalisation.
- P. Busch, P. Lahti, and R. F. Werner, Colloquium: Quantum root-mean-square error and measurement uncertainty relations, Rev. Mod. Phys. 86, 1261 (2014).
- C.-Y. Hsieh, R. Uola, and P. Skrzypczyk, Quantum complementarity: A novel resource for unambiguous exclusion and encryption, arXiv:2309.11968 .
- D. Cavalcanti and P. Skrzypczyk, Quantum steering: a review with focus on semidefinite programming, Rep. Prog. Phys. 80, 024001 (2016a).
- C.-Y. Hsieh, M. Lostaglio, and A. Acín, Quantum channel marginal problem, Phys. Rev. Res. 4, 013249 (2022a).
- P. Skrzypczyk, I. Šupić, and D. Cavalcanti, All sets of incompatible measurements give an advantage in quantum state discrimination, Phys. Rev. Lett. 122, 130403 (2019).
- R. Takagi and B. Regula, General resource theories in quantum mechanics and beyond: Operational characterization via discrimination tasks, Phys. Rev. X 9, 031053 (2019).
- C. Carmeli, T. Heinosaari, and A. Toigo, Quantum incompatibility witnesses, Phys. Rev. Lett. 122, 130402 (2019).
- S. Designolle, M. Farkas, and J. Kaniewski, Incompatibility robustness of quantum measurements: a unified framework, New J. Phys. 21, 113053 (2019).
- A. F. Ducuara and P. Skrzypczyk, Operational interpretation of weight-based resource quantifiers in convex quantum resource theories, Phys. Rev. Lett. 125, 110401 (2020).
- F. Buscemi, E. Chitambar, and W. Zhou, Complete resource theory of quantum incompatibility as quantum programmability, Phys. Rev. Lett. 124, 120401 (2020).
- A. Mitra and M. Farkas, Characterizing and quantifying the incompatibility of quantum instruments, Phys. Rev. A 107, 032217 (2023).
- T. Heinosaari, T. Miyadera, and M. Ziman, An invitation to quantum incompatibility, J. Phys. A: Math. Theor. 49, 123001 (2016).
- T. Heinosaari, T. Miyadera, and D. Reitzner, Strongly incompatible quantum devices, Found. Phys. 44, 34 (2014).
- K. Ji and E. Chitambar, Incompatibility as a resource for programmable quantum instruments, arXiv:2112.03717 .
- R. Landauer, Irreversibility and heat generation in the computing process, IBM J. Res. Dev. 5, 183 (1961).
- C.-Y. Hsieh, Quantifying classical information transmission by thermodynamics, arXiv:2201.12110 .
- Note that this is equivalent to the so-called progammable instrument, where the classical part cannot signal the quantum part (see Ref. [17] for details).
- M. Lostaglio, An introductory review of the resource theory approach to thermodynamics, Reports on Progress in Physics 82, 114001 (2019).
- R. Gallego and L. Aolita, Resource theory of steering, Phys. Rev. X 5, 041008 (2015).
- W. Roga, M. Fannes, and K. Życzkowski, Davies maps for qubits and qutrits, Reports on Mathematical Physics 66, 311 (2010).
- C.-Y. Hsieh, M. Lostaglio, and A. Acín, Entanglement preserving local thermalization, Phys. Rev. Res. 2, 013379 (2020).
- C.-Y. Hsieh, Resource preservability, Quantum 4, 244 (2020).
- J. Watrous, The Theory of Quantum Information (Cambridge University Press, 2018).
- P. Skrzypczyk and D. Cavalcanti, Semidefinite Programming in Quantum Information Science, 2053-2563 (IOP Publishing, 2023).
- Note that these operations are included in a recently proposed resource theory unifying different types of instrument incompatibility [17]; here, we focus on the so-called classical incompatibility defined in Ref. [17].
- B. Regula, Tight constraints on probabilistic convertibility of quantum states, Quantum 6, 817 (2022a).
- B. Regula, Probabilistic transformations of quantum resources, Phys. Rev. Lett. 128, 110505 (2022b).
- B. Regula and L. Lami, Reversibility of quantum resources through probabilistic protocols (2024), arXiv:2309.07206 .
- H.-Y. Ku, C.-Y. Hsieh, and C. Budroni, Measurement incompatibility cannot be stochastically distilled, arXiv:2308.02252 .
- C.-Y. Hsieh, H.-Y. Ku, and C. Budroni, Characterisation and fundamental limitations of irreversible stochastic steering distillation (2023), arXiv:2309.06191 .
- C.-Y. Hsieh and M. Gessner, General quantum resources provide advantages in work extraction tasks, in preparation .
- P. Skrzypczyk, A. J. Short, and S. Popescu, Work extraction and thermodynamics for individual quantum systems, Nat. Commun. 5, 4185 (2014).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th ed. (Cambridge University Press, 2010).
- M. Piani and J. Watrous, Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering, Phys. Rev. Lett. 114, 060404 (2015).
- D. P. Bertsekas, Convex Optimization Theory (Athena Scientific Belmont, 2009).
- L. Gurvits and H. Barnum, Largest separable balls around the maximally mixed bipartite quantum state, Phys. Rev. A 66, 062311 (2002).
- S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).
- E. Haapasalo, Robustness of incompatibility for quantum devices, J. Phys. A: Math. Theor. 48, 255303 (2015).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.