An exact stationary axisymmetric vacuum solution within a metric--affine bumblebee gravity (2402.13014v2)
Abstract: Within the framework of the spontaneous Lorentz symmetry breaking, we consider a metric--affine generalization of the gravitational sector of the Standard--Model Extension (SME), including the Lorentz--violating (LV) coefficients $u$ and $s{\mu\nu}$. In this model, we derive the modified Einstein field equations in order to obtain a new axisymmetric vacuum spinning solution for a particular bumblebee's profile. Such a solution has the remarkable property of incorporating the effects of Lorentz symmetry breaking (LSB) through the LV dimensionless parameter $X=\xi b2$, as the LSB is turned off, $X=0$, we recover the well--established result, the Kerr solution, as expected. Afterwards, we calculate the geodesics, the radial acceleration and thermodynamic quantities for this new metric. We also estimate an upper bound for $X$ by using astrophysical data of the advance Mercury's perihelion.
- S. Judes and M. Visser, “Conservation laws in “doubly special relativity”,” Phys. Rev. D, vol. 68, p. 045001, 2003.
- H. P. Robertson, “Postulate versus observation in the special theory of relativity,” Rev. Mod. Phys., vol. 21, pp. 378–382, 1949.
- R. C. Myers and M. Pospelov, “Ultraviolet modifications of dispersion relations in effective field theory,” Phys. Rev. Lett., vol. 90, p. 211601, 2003.
- O. Bertolami and J. G. Rosa, “Bounds on cubic lorentz-violating terms in the fermionic dispersion relation,” Phys. Rev. D, vol. 71, p. 097901, 2005.
- C. M. Reyes, L. F. Urrutia, and J. D. Vergara, “Quantization of the myers-pospelov model: The photon sector interacting with standard fermions as a perturbation of qed,” Phys. Rev. D, vol. 78, p. 125011, 2008.
- D. Mattingly, “Have we tested lorentz invariance enough?,” arXiv preprint arXiv:0802.1561, 2008.
- G. Rubtsov, P. Satunin, and S. Sibiryakov, “The influence of lorentz violation on uhe photon detection,” CPT and Lorentz Symmetry, p. 192–195, 2014.
- S. Liberati, “Tests of lorentz invariance: a 2013 update,” Classical and Quantum Gravity, vol. 30, no. 13, p. 133001, 2013.
- J. D. Tasson, “What do we know about lorentz invariance?,” Reports on Progress in Physics, vol. 77, no. 6, p. 062901, 2014.
- A. Hees, Q. G. Bailey, A. Bourgoin, P.-L. Bars, C. Guerlin, L. Poncin-Lafitte, et al., “Tests of lorentz symmetry in the gravitational sector,” Universe, vol. 2, no. 4, p. 30, 2016.
- C. Rovelli, Quantum gravity. Cambridge university press, 2004.
- V. A. Kostelecký and S. Samuel, “Spontaneous breaking of lorentz symmetry in string theory,” Phys. Rev. D, vol. 39, pp. 683–685, 1989.
- V. A. Kostelecký and S. Samuel, “Phenomenological gravitational constraints on strings and higher-dimensional theories,” Phys. Rev. Lett., vol. 63, pp. 224–227, 1989.
- V. A. Kostelecký and S. Samuel, “Gravitational phenomenology in higher-dimensional theories and strings,” Phys. Rev. D, vol. 40, pp. 1886–1903, 1989.
- V. A. Kostelecký and R. Potting, “Cpt and strings,” Nuclear Physics B, vol. 359, no. 2, pp. 545 – 570, 1991.
- V. A. Kostelecký and R. Potting, “Cpt, strings, and meson factories,” Phys. Rev. D, vol. 51, pp. 3923–3935, 1995.
- R. Gambini and J. Pullin, “Nonstandard optics from quantum space-time,” Phys. Rev. D, vol. 59, p. 124021, 1999.
- M. Bojowald, H. A. Morales-Técotl, and H. Sahlmann, “Loop quantum gravity phenomenology and the issue of lorentz invariance,” Phys. Rev. D, vol. 71, p. 084012, 2005.
- G. Amelino-Camelia and S. Majid, “Waves on noncommutative space–time and gamma-ray bursts,” International Journal of Modern Physics A, vol. 15, no. 27, pp. 4301–4323, 2000.
- S. M. Carroll, J. A. Harvey, V. A. Kostelecký, C. D. Lane, and T. Okamoto, “Noncommutative field theory and lorentz violation,” Phys. Rev. Lett., vol. 87, p. 141601, 2001.
- L. Modesto, “Super-renormalizable Quantum Gravity,” Phys. Rev. D, vol. 86, p. 044005, 2012.
- J. R. Nascimento, A. Y. Petrov, and P. J. Porfírio, “Causal Gödel-type metrics in non-local gravity theories,” Eur. Phys. J. C, vol. 81, no. 9, p. 815, 2021.
- F. R. Klinkhamer and C. Rupp, “Spacetime foam, cpt anomaly, and photon propagation,” Phys. Rev. D, vol. 70, p. 045020, 2004.
- S. Bernadotte and F. R. Klinkhamer, “Bounds on length scales of classical spacetime foam models,” Phys. Rev. D, vol. 75, p. 024028, 2007.
- F. Klinkhamer, “Z-string global gauge anomaly and lorentz non-invariance,” Nuclear Physics B, vol. 535, no. 1, pp. 233 – 241, 1998.
- F. Klinkhamer, “A cpt anomaly,” Nuclear Physics B, vol. 578, no. 1, pp. 277 – 289, 2000.
- F. Klinkhamer and J. Schimmel, “Cpt anomaly: a rigorous result in four dimensions,” Nuclear Physics B, vol. 639, no. 1, pp. 241 – 262, 2002.
- K. Ghosh and F. Klinkhamer, “Anomalous lorentz and cpt violation from a local chern–simons-like term in the effective gauge-field action,” Nuclear Physics B, vol. 926, pp. 335 – 369, 2018.
- P. Hořava, “Quantum gravity at a lifshitz point,” Phys. Rev. D, vol. 79, p. 084008, 2009.
- G. Cognola, R. Myrzakulov, L. Sebastiani, S. Vagnozzi, and S. Zerbini, “Covariant hořava-like and mimetic horndeski gravity: cosmological solutions and perturbations,” Classical and quantum gravity, vol. 33, no. 22, p. 225014, 2016.
- A. Casalino, M. Rinaldi, L. Sebastiani, and S. Vagnozzi, “Alive and well: mimetic gravity and a higher-order extension in light of gw170817,” Classical and Quantum Gravity, vol. 36, no. 1, p. 017001, 2018.
- V. A. Kosteleckỳ and N. Russell, “Data tables for lorentz and c p t violation,” Reviews of Modern Physics, vol. 83, no. 1, p. 11, 2011.
- D. Colladay and P. McDonald, “Statistical mechanics and lorentz violation,” Physical Review D, vol. 70, no. 12, p. 125007, 2004.
- A. A. Araújo Filho, “Lorentz-violating scenarios in a thermal reservoir,” The European Physical Journal Plus, vol. 136, no. 4, pp. 1–14, 2021.
- A. A. Araújo Filho and R. V. Maluf, “Thermodynamic properties in higher-derivative electrodynamics,” Brazilian Journal of Physics, vol. 51, no. 3, pp. 820–830, 2021.
- M. Anacleto, F. Brito, E. Maciel, A. Mohammadi, E. Passos, W. Santos, and J. Santos, “Lorentz-violating dimension-five operator contribution to the black body radiation,” Physics Letters B, vol. 785, pp. 191–196, 2018.
- R. Casana, M. M. Ferreira Jr, and J. S. Rodrigues, “Lorentz-violating contributions of the carroll-field-jackiw model to the cmb anisotropy,” Physical Review D, vol. 78, no. 12, p. 125013, 2008.
- R. Casana, M. M. Ferreira Jr, J. S. Rodrigues, and M. R. Silva, “Finite temperature behavior of the c p t-even and parity-even electrodynamics of the standard model extension,” Physical Review D, vol. 80, no. 8, p. 085026, 2009.
- A. A. Araújo Filho and A. Y. Petrov, “Higher-derivative lorentz-breaking dispersion relations: a thermal description,” The European Physical Journal C, vol. 81, no. 9, p. 843, 2021.
- A. Aguirre, G. Flores-Hidalgo, R. Rana, and E. Souza, “The lorentz-violating real scalar field at thermal equilibrium,” The European Physical Journal C, vol. 81, no. 5, p. 459, 2021.
- T. Mariz, J. R. Nascimento, and A. Y. Petrov, “On the perturbative generation of the higher-derivative Lorentz-breaking terms,” Phys. Rev. D, vol. 85, p. 125003, 2012.
- J. A. A. S. Reis et al., “Thermal aspects of interacting quantum gases in lorentz-violating scenarios,” The European Physical Journal Plus, vol. 136, no. 3, p. 310, 2021.
- A. A. Araújo Filho and A. Y. Petrov, “Bouncing universe in a heat bath,” International Journal of Modern Physics A, vol. 36, no. 34 & 35, p. 2150242, 2021.
- J. Furtado, H. Hassanabadi, J. Reis, et al., “Thermal analysis of photon-like particles in rainbow gravity,” arXiv preprint arXiv:2305.08587, 2023.
- A. A. Araújo Filho, “Thermodynamics of massless particles in curved spacetime,” arXiv preprint arXiv:2201.00066, 2021.
- S. M. Carroll, G. B. Field, and R. Jackiw, “Limits on a lorentz-and parity-violating modification of electrodynamics,” Physical Review D, vol. 41, no. 4, p. 1231, 1990.
- S. M. Carroll and H. Tam, “Aether compactification,” Physical Review D, vol. 78, no. 4, p. 044047, 2008.
- M. Gomes, J. R. Nascimento, A. Y. Petrov, and A. J. da Silva, “On the aether-like Lorentz-breaking actions,” Phys. Rev. D, vol. 81, p. 045018, 2010.
- D. Colladay and V. A. Kosteleckỳ, “Lorentz-violating extension of the standard model,” Physical Review D, vol. 58, no. 11, p. 116002, 1998.
- V. A. Kosteleckỳ and Z. Li, “Backgrounds in gravitational effective field theory,” Physical Review D, vol. 103, no. 2, p. 024059, 2021.
- V. A. Kosteleckỳ, “Gravity, lorentz violation, and the standard model,” Physical Review D, vol. 69, no. 10, p. 105009, 2004.
- O. Bertolami and J. Paramos, “Vacuum solutions of a gravity model with vector-induced spontaneous lorentz symmetry breaking,” Physical Review D, vol. 72, no. 4, p. 044001, 2005.
- R. Casana, A. Cavalcante, F. Poulis, and E. Santos, “Exact schwarzschild-like solution in a bumblebee gravity model,” Physical Review D, vol. 97, no. 10, p. 104001, 2018.
- A. Santos, W. Jesus, J. Nascimento, and A. Y. Petrov, “Gödel solution in the bumblebee gravity,” Modern Physics Letters A, vol. 30, no. 02, p. 1550011, 2015.
- W. Jesus and A. Santos, “Gödel-type universes in bumblebee gravity,” International Journal of Modern Physics A, vol. 35, no. 09, p. 2050050, 2020.
- W. Jesus and A. Santos, “Ricci dark energy in bumblebee gravity model,” Modern Physics Letters A, vol. 34, no. 22, p. 1950171, 2019.
- R. Maluf and J. C. Neves, “Black holes with a cosmological constant in bumblebee gravity,” Physical Review D, vol. 103, no. 4, p. 044002, 2021.
- S. K. Jha, H. Barman, and A. Rahaman, “Bumblebee gravity and particle motion in snyder noncommutative spacetime structures,” Journal of Cosmology and Astroparticle Physics, vol. 2021, no. 04, p. 036, 2021.
- R. Xu, D. Liang, and L. Shao, “Static spherical vacuum solutions in the bumblebee gravity model,” Physical Review D, vol. 107, no. 2, p. 024011, 2023.
- R. V. Maluf and J. C. S. Neves, “Bumblebee field as a source of cosmological anisotropies,” JCAP, vol. 10, p. 038, 2021.
- S. Kumar Jha, H. Barman, and A. Rahaman, “Bumblebee gravity and particle motion in Snyder noncommutative spacetime structures,” JCAP, vol. 04, p. 036, 2021.
- T. Jacobson and D. Mattingly, “Gravity with a dynamical preferred frame,” Physical Review D, vol. 64, no. 2, p. 024028, 2001.
- R. Jackiw and S.-Y. Pi, “Chern-simons modification of general relativity,” Physical Review D, vol. 68, no. 10, p. 104012, 2003.
- L. Mirzagholi, E. Komatsu, K. D. Lozanov, and Y. Watanabe, “Effects of gravitational chern-simons during axion-su (2) inflation,” Journal of Cosmology and Astroparticle Physics, vol. 2020, no. 06, p. 024, 2020.
- N. Bartolo and G. Orlando, “Parity breaking signatures from a chern-simons coupling during inflation: the case of non-gaussian gravitational waves,” Journal of Cosmology and Astroparticle Physics, vol. 2017, no. 07, p. 034, 2017.
- A. Conroy and T. Koivisto, “Parity-violating gravity and gw170817 in non-riemannian cosmology,” Journal of Cosmology and Astroparticle Physics, vol. 2019, no. 12, p. 016, 2019.
- M. Li, H. Rao, and D. Zhao, “A simple parity violating gravity model without ghost instability,” Journal of Cosmology and Astroparticle Physics, vol. 2020, no. 11, p. 023, 2020.
- H. Rao and D. Zhao, “Parity violating scalar-tensor model in teleparallel gravity and its cosmological application,” JHEP, vol. 08, p. 070, 2023.
- P. Porfirio, J. Fonseca-Neto, J. Nascimento, A. Y. Petrov, J. Ricardo, and A. Santos, “Chern-simons modified gravity and closed timelike curves,” Physical Review D, vol. 94, no. 4, p. 044044, 2016.
- P. Porfirio, J. Fonseca-Neto, J. Nascimento, and A. Y. Petrov, “Causality aspects of the dynamical chern-simons modified gravity,” Physical Review D, vol. 94, no. 10, p. 104057, 2016.
- B. Altschul, J. Nascimento, A. Y. Petrov, and P. Porfírio, “First-order perturbations of gödel-type metrics in non-dynamical chern–simons modified gravity,” Classical and Quantum Gravity, vol. 39, no. 2, p. 025002, 2021.
- Q. G. Bailey and V. A. Kosteleckỳ, “Signals for lorentz violation in post-newtonian gravity,” Physical Review D, vol. 74, no. 4, p. 045001, 2006.
- R. Tso and Q. G. Bailey, “Light-bending tests of lorentz invariance,” Physical Review D, vol. 84, no. 8, p. 085025, 2011.
- A. Hees, Q. G. Bailey, C. Le Poncin-Lafitte, A. Bourgoin, A. Rivoldini, B. Lamine, F. Meynadier, C. Guerlin, and P. Wolf, “Testing lorentz symmetry with planetary orbital dynamics,” Physical Review D, vol. 92, no. 6, p. 064049, 2015.
- B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett., vol. 116, no. 6, p. 061102, 2016.
- K. Akiyama et al., “First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole,” Astrophys. J. Lett., vol. 875, p. L1, 2019.
- K. Akiyama et al., “First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way,” Astrophys. J. Lett., vol. 930, no. 2, p. L12, 2022.
- E. Barausse and T. P. Sotiriou, “A no-go theorem for slowly rotating black holes in Hořava-Lifshitz gravity,” Phys. Rev. Lett., vol. 109, p. 181101, 2012. [Erratum: Phys.Rev.Lett. 110, 039902 (2013)].
- A. Wang, “Stationary axisymmetric and slowly rotating spacetimes in Hořava-lifshitz gravity,” Phys. Rev. Lett., vol. 110, no. 9, p. 091101, 2013.
- M. Guerrero, G. Mora-Pérez, G. J. Olmo, E. Orazi, and D. Rubiera-Garcia, “Rotating black holes in Eddington-inspired Born-Infeld gravity: an exact solution,” JCAP, vol. 07, p. 058, 2020.
- W.-H. Shao, C.-Y. Chen, and P. Chen, “Generating Rotating Spacetime in Ricci-Based Gravity: Naked Singularity as a Black Hole Mimicker,” JCAP, vol. 03, p. 041, 2021.
- J. R. Nascimento, A. Y. Petrov, and P. J. Porfírio, “Induced gravitational topological term and the Einstein-Cartan modified theory,” Phys. Rev. D, vol. 105, no. 4, p. 044053, 2022.
- New York, USA: Springer, 2000.
- J. Foster and R. Lehnert, “Classical-physics applications for Finsler b𝑏bitalic_b space,” Phys. Lett. B, vol. 746, pp. 164–170, 2015.
- B. R. Edwards and V. A. Kostelecky, “Riemann–Finsler geometry and Lorentz-violating scalar fields,” Phys. Lett. B, vol. 786, pp. 319–326, 2018.
- M. Schreck, “Classical kinematics and Finsler structures for nonminimal Lorentz-violating fermions,” Eur. Phys. J. C, vol. 75, no. 5, p. 187, 2015.
- D. Colladay and P. McDonald, “Singular Lorentz-Violating Lagrangians and Associated Finsler Structures,” Phys. Rev. D, vol. 92, no. 8, p. 085031, 2015.
- M. Schreck, “Classical Lagrangians and Finsler structures for the nonminimal fermion sector of the Standard-Model Extension,” Phys. Rev. D, vol. 93, no. 10, p. 105017, 2016.
- D. M. Ghilencea, “Palatini quadratic gravity: spontaneous breaking of gauged scale symmetry and inflation,” Eur. Phys. J. C, vol. 80, p. 1147, 4 2020.
- D. M. Ghilencea, “Gauging scale symmetry and inflation: Weyl versus Palatini gravity,” Eur. Phys. J. C, vol. 81, no. 6, p. 510, 2021.
- A. Delhom, J. R. Nascimento, G. J. Olmo, A. Y. Petrov, and P. J. Porfírio, “Metric-affine bumblebee gravity: classical aspects,” Eur. Phys. J. C, vol. 81, no. 4, p. 287, 2021.
- A. Delhom, J. R. Nascimento, G. J. Olmo, A. Y. Petrov, and P. J. Porfírio, “Radiative corrections in metric-affine bumblebee model,” Phys. Lett. B, vol. 826, p. 136932, 2022.
- A. Delhom, T. Mariz, J. R. Nascimento, G. J. Olmo, A. Y. Petrov, and P. J. Porfírio, “Spontaneous Lorentz symmetry breaking and one-loop effective action in the metric-affine bumblebee gravity,” JCAP, vol. 07, no. 07, p. 018, 2022.
- A. A. Araújo Filho, J. R. Nascimento, A. Y. Petrov, and P. J. Porfírio, “Vacuum solution within a metric-affine bumblebee gravity,” Phys. Rev. D, vol. 108, no. 8, p. 085010, 2023.
- G. Lambiase, L. Mastrototaro, R. C. Pantig, and A. Ovgun, “Probing Schwarzschild-like black holes in metric-affine bumblebee gravity with accretion disk, deflection angle, greybody bounds, and neutrino propagation,” JCAP, vol. 12, p. 026, 2023.
- S. K. Jha and A. Rahaman, “Study of quasinormal modes, greybody bounds, and sparsity of Hawking radiation within the metric-affine bumblebee gravity framework,” 10 2023.
- H. Hassanabadi, N. Heidari, J. Kríz, P. Porfírio, S. Zare, et al., “Gravitational traces of bumblebee gravity in metric-affine formalism,” arXiv preprint arXiv:2305.18871, 2023.
- S. Boudet, F. Bombacigno, G. J. Olmo, and P. J. Porfirio, “Quasinormal modes of Schwarzschild black holes in projective invariant Chern-Simons modified gravity,” JCAP, vol. 05, no. 05, p. 032, 2022.
- F. Bombacigno, S. Boudet, G. J. Olmo, and G. Montani, “Big bounce and future time singularity resolution in Bianchi I cosmologies: The projective invariant Nieh-Yan case,” Phys. Rev. D, vol. 103, no. 12, p. 124031, 2021.
- V. I. Afonso, C. Bejarano, J. Beltran Jimenez, G. J. Olmo, and E. Orazi, “The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields,” Class. Quant. Grav., vol. 34, no. 23, p. 235003, 2017.
- J. Beltran Jimenez, L. Heisenberg, G. J. Olmo, and D. Rubiera-Garcia, “Born–Infeld inspired modifications of gravity,” Phys. Rept., vol. 727, pp. 1–129, 2018.
- A. Delhom, Theoretical and Observational Aspecs in Metric-Affine Gravity: A field theoretic perspective. PhD thesis, Valencia U., 2021.
- J. Beltrán Jiménez and A. Delhom, “Ghosts in metric-affine higher order curvature gravity,” Eur. Phys. J. C, vol. 79, no. 8, p. 656, 2019.
- F. M. Ramazanoğlu, “Spontaneous growth of vector fields in gravity,” Phys. Rev. D, vol. 96, no. 6, p. 064009, 2017.
- F. M. Ramazanoğlu and K. I. Ünlütürk, “Generalized disformal coupling leads to spontaneous tensorization,” Phys. Rev. D, vol. 100, no. 8, p. 084026, 2019.
- V. Cardoso, A. Foschi, and M. Zilhao, “Collective scalarization or tachyonization: when averaging fails,” Phys. Rev. Lett., vol. 124, no. 22, p. 221104, 2020.
- M. Rinaldi, “Black holes with non-minimal derivative coupling,” Phys. Rev. D, vol. 86, p. 084048, 2012.
- E. Babichev and C. Charmousis, “Dressing a black hole with a time-dependent Galileon,” JHEP, vol. 08, p. 106, 2014.
- A. A. Araújo Filho, J. Furtado, J. Reis, and J. Silva, “Thermodynamical properties of an ideal gas in a traversable wormhole,” Classical and Quantum Gravity, vol. 40, no. 24, p. 245001, 2023.
- A. A. Araújo Filho, Thermal aspects of field theories. Amazon. com, 2022.
- P. Sedaghatnia, H. Hassanabadi, J. Porfírio, W. Chung, et al., “Thermodynamical properties of a deformed schwarzschild black hole via dunkl generalization,” arXiv preprint arXiv:2302.11460, 2023.
- R. M. Wald, General Relativity. Chicago, USA: Chicago Univ. Pr., 1984.
- R. d’Invemo, Introducing Einstein’s relativity. Oxford University Press, 1992.
- https://nssdc.gsfc.nasa.gov/planetary/factsheet/.
- L. Iorio, “Calculation of the Uncertainties in the Planetary Precessions with the Recent EPM2017 Ephemerides and their Use in Fundamental Physics and Beyond,” Astron. J., vol. 157, no. 6, p. 220, 2019. [Erratum: Astron.J. 165, 76 (2023)].
- L. Cugusi and E. Proverbio, “Relativistic effects on the motion of earth’s artificial satellites,” Astronomy and Astrophysics, Vol. 69, p. 321 (1978), vol. 69, p. 321, 1978.
- L. Iorio, “Advances in the measurement of the Lense-Thirring effect with planetary motions in the field of the Sun,” Schol. Res. Exch., vol. 2008, p. 105235, 2008.
- E. V. Pitjeva and N. P. Pitjev, “Relativistic effects and dark matter in the Solar system from observations of planets and spacecraft,” Mon. Not. Roy. Astron. Soc., vol. 432, p. 3431, 2013.
- N. P. Pitjev and E. V. Pitjeva, “Constraints on dark matter in the solar system,” Astron. Lett., vol. 39, pp. 141–149, 2013.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.