Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Lüscher equation with long-range forces (2402.12985v3)

Published 20 Feb 2024 in hep-lat, hep-ph, and nucl-th

Abstract: We derive the modified L\"uscher equation in the presence of the long-range force caused by the exchange of a light particle. It is shown that the use of this equation enables one to circumvent the problems related to the strong partial-wave mixing and the t-channel sub-threshold singularities. It is also demonstrated that the present method is intrinsically linked to the so-called modified effective-range expansion (MERE) in the infinite volume. A detailed comparison with the two recently proposed alternative approaches is provided.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Martin Lüscher. Two particle states on a torus and their relation to the scattering matrix. Nucl. Phys. B, 354:531–578, 1991.
  2. K. Rummukainen and Steven A. Gottlieb. Resonance scattering phase shifts on a nonrest frame lattice. Nucl. Phys. B, 450:397–436, 1995.
  3. A Method to measure the antikaon-nucleon scattering length in lattice QCD. Phys. Lett. B, 681:439–443, 2009.
  4. Scalar mesons in a finite volume. JHEP, 01:019, 2011.
  5. Two particle states and the S-matrix elements in multi-channel scattering. JHEP, 07:011, 2005.
  6. Two particle states in a box and the S-matrix in multi-channel scattering. Int. J. Mod. Phys. A, 21:847–850, 2006.
  7. Multiple-channel generalization of Lellouch-Luscher formula. Phys. Rev. D, 86:016007, 2012.
  8. Moving multichannel systems in a finite volume with application to proton-proton fusion. Phys. Rev. D, 88(9):094507, 2013.
  9. Generalized Lüscher formula in multichannel baryon-meson scattering. Phys. Rev. D, 87(1):014502, 2013.
  10. Coupled-channel scattering on a torus. Phys. Rev. D, 88(1):014501, 2013.
  11. Scattering phase shifts for two particles of different mass and non-zero total momentum in lattice QCD. Phys. Rev. D, 85:114507, 2012.
  12. Finite-volume effects for two-hadron states in moving frames. Nucl. Phys. B, 727:218–243, 2005.
  13. Scattering phases for meson and baryon resonances on general moving-frame lattices. Phys. Rev. D, 86:094513, 2012.
  14. Lu Meng and E. Epelbaum. Two-particle scattering from finite-volume quantization conditions using the plane wave basis. JHEP, 10:051, 2021.
  15. André Baião Raposo and Maxwell T. Hansen. The Lüscher scattering formalism on the t-channel cut. PoS, LATTICE2022:051, 2023.
  16. André Baião Raposo and Maxwell T. Hansen. Finite-volume scattering on the left-hand cut. 11 2023.
  17. Weakly bound H𝐻Hitalic_H dibaryon from SU(3)-flavor-symmetric QCD. Phys. Rev. Lett., 127(24):242003, 2021.
  18. Role of Left-Hand Cut Contributions on Pole Extractions from Lattice Data: Case Study for Tcc(3875)+. Phys. Rev. Lett., 131(13):131903, 2023.
  19. Solving the left-hand cut problem in lattice QCD: Tc⁢c⁢(3875)+subscript𝑇𝑐𝑐superscript3875T_{cc}(3875)^{+}italic_T start_POSTSUBSCRIPT italic_c italic_c end_POSTSUBSCRIPT ( 3875 ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT from finite volume energy levels. 12 2023.
  20. Low-energy theorems for nucleon-nucleon scattering at unphysical pion masses. Phys. Rev. C, 92(1):014001, 2015.
  21. Low-energy theorems for nucleon-nucleon scattering at Mπ=450subscript𝑀𝜋450M_{\pi}=450italic_M start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT = 450 MeV. Phys. Rev. C, 94(1):014001, 2016.
  22. Relativistic, model-independent, three-particle quantization condition. Phys. Rev., D90(11):116003, 2014.
  23. Expressing the three-particle finite-volume spectrum in terms of the three-to-three scattering amplitude. Phys. Rev., D92(11):114509, 2015.
  24. Three-particle quantization condition in a finite volume: 1. The role of the three-particle force. JHEP, 09:109, 2017.
  25. Three particle quantization condition in a finite volume: 2. General formalism and the analysis of data. JHEP, 10:115, 2017.
  26. M. Mai and M. Döring. Three-body Unitarity in the Finite Volume. Eur. Phys. J., A53(12):240, 2017.
  27. Finite-Volume Spectrum of π+⁢π+superscript𝜋superscript𝜋\pi^{+}\pi^{+}italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT and π+⁢π+⁢π+superscript𝜋superscript𝜋superscript𝜋\pi^{+}\pi^{+}\pi^{+}italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT Systems. Phys. Rev. Lett., 122(6):062503, 2019.
  28. Incorporating D⁢D⁢π𝐷𝐷𝜋DD\piitalic_D italic_D italic_π effects and left-hand cuts in lattice QCD studies of the Tc⁢c⁢(3875)+subscript𝑇𝑐𝑐superscript3875T_{cc}(3875)^{+}italic_T start_POSTSUBSCRIPT italic_c italic_c end_POSTSUBSCRIPT ( 3875 ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT. 1 2024.
  29. Two-Particle Elastic Scattering in a Finite Volume Including QED. Phys. Rev. D, 90(7):074511, 2014.
  30. Modified Effective Range Function. Phys. Rev. A, 26:1218–1225, 1982.
  31. Coulomb effects in low-energy proton proton scattering. Nucl. Phys. A, 665:137–163, 2000.
  32. Resonances in Coupled Channels in Nuclear and Particle Physics. Phys. Rept., 82:31–177, 1982.
  33. Collision Theory. Dover Publications, 10 2004.
  34. A Renormalization group treatment of two-body scattering. Phys. Lett. B, 464:169–176, 1999.
  35. Removing pions from two nucleon effective field theory. Nucl. Phys. A, 645:439–461, 1999.
  36. The Role of the background in the extraction of resonance contributions from meson-baryon scattering. Phys. Lett. B, 681:26–31, 2009.
  37. Analytic continuation of the relativistic three-particle scattering amplitudes. Phys. Rev. D, 108(3):034016, 2023.
  38. Theoretical aspects of quantum electrodynamics in a finite volume with periodic boundary conditions. Phys. Rev. D, 99(3):034510, 2019.
  39. Generalization of the Jost Function and Its Application to Off-Shell Scattering. Phys. Rev. C, 8:1255–1261, 1973.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: