A spectral collocation method for functional and delay differential equations (2402.12952v2)
Abstract: A framework for Chebyshev spectral collocation methods for the numerical solution of functional and delay differential equations (FDEs and DDEs) is described. The framework combines interpolation via the barycentric resampling matrix with a multidomain approach used to resolve isolated discontinuities propagated by non-smooth initial data. Geometric convergence is demonstrated for several examples of linear and nonlinear FDEs and DDEs with various delay types, including discrete, proportional, continuous, and state-dependent delay. The framework is a natural extension of standard spectral collocation methods based on polynomial interpolants and can be readily incorporated into existing spectral discretisations, such as in Chebfun/Chebop, allowing the automated and efficient solution of a wide class of nonlinear functional and delay differential equations.
- A spectral method for pantograph-type delay differential equations and its convergence analysis. J. Comput. Math., 27(2-3):254–265, 2009. ISSN 0254-9409,1991-7139.
- Issues in the numerical solution of evolutionary delay differential equations. Adv. Comput. Math., 3(3):171–196, 1995. ISSN 1019-7168,1572-9044. 10.1007/BF02988625. URL https://doi.org/10.1007/BF02988625.
- R. Baltensperger and M. R. Trummer. Spectral differencing with a twist. SIAM Journal on Scientific Computing, 24(5):1465–1487, 2003. 10.1137/S1064827501388182. URL https://doi.org/10.1137/S1064827501388182.
- A. Bellen and M. Zennaro. Numerical methods for delay differential equations. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, 2013. ISBN 978-0-19-967137-3. First paperback reprint of the 2003 original [MR1997488].
- J.-P. Berrut and G. Klein. Recent advances in linear barycentric rational interpolation. Journal of Computational and Applied Mathematics, 259:95–107, 2014.
- Barycentric Lagrange interpolation. SIAM Rev., 46(3):501–517, 2004. ISSN 0036-1445. 10.1137/S0036144502417715. URL https://doi.org/10.1137/S0036144502417715.
- A. Birkisson and T. A. Driscoll. Automatic Fréchet differentiation for the numerical solution of boundary-value problems. ACM Trans. Math. Softw., 38(4), aug 2012. ISSN 0098-3500. 10.1145/2331130.2331134. URL https://doi.org/10.1145/2331130.2331134.
- Pseudospectral method for assessing stability robustness for linear time-periodic delayed dynamical systems. Internat. J. Numer. Methods Engrg., 121(16):3505–3528, 2020. ISSN 0029-5981,1097-0207. 10.1002/nme.6368. URL https://doi.org/10.1002/nme.6368.
- J. P. Boyd. Chebyshev and Fourier spectral methods. Dover Publications, Inc., Mineola, NY, second edition, 2001. ISBN 0-486-41183-4.
- F. Brauer and C. Castillo-Chávez. Mathematical models in population biology and epidemiology, volume 40 of Texts in Applied Mathematics. Springer-Verlag, New York, 2001. ISBN 0-387-98902-1. 10.1007/978-1-4757-3516-1. URL https://doi.org/10.1007/978-1-4757-3516-1.
- Pseudospectral differencing methods for characteristic roots of delay differential equations. SIAM Journal on Scientific Computing, 27(2):482–495, 2005.
- H. Brunner and Q. Hu. Optimal superconvergence orders of iterated collocation solutions for volterra integral equations with vanishing delays. SIAM Journal on Numerical Analysis, 43(5):1934–1949, 2005.
- H. Brunner and Q. Hu. Optimal superconvergence results for delay integro-differential equations of pantograph type. SIAM journal on numerical analysis, 45(3):986–1004, 2007.
- On the chebyshev spectral continuous time approximation for constant and periodic delay differential equations. Communications in Nonlinear Science and Numerical Simulation, 16(3):1541–1554, 2011.
- C. Canuto and A. Quarteroni. Preconditioned minimal residual methods for chebyshev spectral calculations. Journal of Computational Physics, 60(2):315–337, 1985.
- T. A. Driscoll. Automatic spectral collocation for integral, integro-differential, and integrally reformulated differential equations. Journal of Computational Physics, 229(17):5980–5998, 2010.
- T. A. Driscoll and B. Fornberg. A block pseudospectral method for Maxwell’s equations. I. One-dimensional case. J. Comput. Phys., 140(1):47–65, 1998. ISSN 0021-9991. 10.1006/jcph.1998.5883. URL https://doi.org/10.1006/jcph.1998.5883.
- T. A. Driscoll and N. Hale. Rectangular spectral collocation. IMA J. Numer. Anal., 36(1):108–132, 2016. ISSN 0272-4979. 10.1093/imanum/dru062. URL https://doi.org/10.1093/imanum/dru062.
- The chebop system for automatic solution of differential equations. BIT Numerical Mathematics, 48:701–723, 2008. 10.1007/s10543-008-0198-4. URL http://www.springerlink.com/content/46471515240111m2/?p=864e78b520294229958456c91ab618fc&pi=5.
- Chebfun Guide. Pafnuty Publications, 2014. URL www.chebfun.org.
- R. D. Driver. Ordinary and delay differential equations, volume 20. Springer Science & Business Media, 2012.
- A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput., 14(6):1368–1393, 1993. ISSN 1064-8275. 10.1137/0914081. URL https://doi.org/10.1137/0914081.
- A. El-Safty and M. A. Hussien. Chebyshev solution for stiff delay differential equations. Int. J. Comput. Math., 68(3-4):323–335, 1998. ISSN 0020-7160. 10.1080/00207169808804699. URL https://doi.org/10.1080/00207169808804699.
- Collocation methods for the computation of periodic solutions of delay differential equations. SIAM Journal on Scientific Computing, 22(5):1593–1609, 2001.
- Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Software, 28(1):1–21, 2002. ISSN 0098-3500,1557-7295. 10.1145/513001.513002. URL https://doi.org/10.1145/513001.513002.
- T. Erneux. Applied delay differential equations, volume 3 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer, New York, 2009. ISBN 978-0-387-74371-4.
- B. Fornberg. A practical guide to pseudospectral methods, volume 1 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 1996. ISBN 0-521-49582-2. 10.1017/CBO9780511626357. URL https://doi.org/10.1017/CBO9780511626357.
- On a functional differential equation. IMA Journal of Applied Mathematics, 8(3):271–307, 1971.
- K. Gopalsamy. Stability and oscillations in delay differential equations of population dynamics, volume 74 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1992. ISBN 0-7923-1594-4. 10.1007/978-94-015-7920-9. URL https://doi.org/10.1007/978-94-015-7920-9.
- J. K. Hale. Functional differential equations. In Analytic theory of differential equations, pages 9–22. Springer, 1971.
- N. Hale. Software repository containing for “A spectral collocation method for functional and delay differential equations”, 2024. URL https://github.com/nickhale/ddes/.
- N. Hale and T. W. Tee. Conformal maps to multiply slit domains and applications. SIAM J. Sci. Comput., 31(4):3195–3215, 2009. ISSN 1064-8275,1095-7197. 10.1137/080738325. URL https://doi.org/10.1137/080738325.
- Numerical and asymptotic solutions to a nonlinear functional differential equation. Submitted to the IMA Journal of Applied Mathematics, 2024.
- Functional differential equations with state-dependent delays: theory and applications. In Handbook of differential equations: ordinary differential equations. Vol. III, Handb. Differ. Equ., pages 435–545. Elsevier/North-Holland, Amsterdam, 2006. ISBN 978-0-444-52849-0; 0-444-52849-0. 10.1016/S1874-5725(06)80009-X. URL https://doi.org/10.1016/S1874-5725(06)80009-X.
- P. Henrici. Barycentric formulas for interpolating trigonometric polynomials and their conjugates. Numer. Math., 33(2):225–234, jun 1979. ISSN 0029-599X. 10.1007/BF01399556. URL https://doi.org/10.1007/BF01399556.
- N. J. Higham. The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal., 24(4):547–556, 2004. ISSN 0272-4979. 10.1093/imanum/24.4.547. URL https://doi.org/10.1093/imanum/24.4.547.
- A fully-discrete spectral method for delay-differential equations. SIAM Journal on Numerical Analysis, 28(4):1121–1140, 1991. 10.1137/0728060. URL https://doi.org/10.1137/0728060.
- Z. Jackiewicz. One-step methods of any order for neutral functional differential equations. SIAM J. Numer. Anal., 21(3):486–511, 1984. ISSN 0036-1429. 10.1137/0721036. URL https://doi.org/10.1137/0721036.
- A new numerical method to solve pantograph delay differential equations with convergence analysis. Advances in Difference Equations, 2021(1):1–12, 2021.
- G. Koenigs. Recherches sur les intégrales de certaines équations fonctionnelles. Ann. Sci. École Norm. Sup. (3), 1:3–41, 1884. ISSN 0012-9593. URL http://www.numdam.org/item?id=ASENS_1884_3_1__S3_0.
- V. Kolmanovskii and A. Myshkis. Introduction to the theory and applications of functional-differential equations, volume 463 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 1999. ISBN 0-7923-5504-0. 10.1007/978-94-017-1965-0. URL https://doi.org/10.1007/978-94-017-1965-0.
- D. Kosloff and H. Tal-Ezer. A modified Chebyshev pseudospectral method with an O(N−1)𝑂superscript𝑁1O(N^{-1})italic_O ( italic_N start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) time step restriction. J. Comput. Phys., 104(2):457–469, 1993. ISSN 0021-9991,1090-2716. 10.1006/jcph.1993.1044. URL https://doi.org/10.1006/jcph.1993.1044.
- Y. Kuang. Delay differential equations with applications in population dynamics, volume 191 of Mathematics in Science and Engineering. Academic Press, Inc., Boston, MA, 1993. ISBN 0-12-427610-5.
- On the use of delay equations in engineering applications. J. Vib. Control, 16(7-8):943–960, 2010. ISSN 1077-5463,1741-2986. 10.1177/1077546309341100. URL https://doi.org/10.1177/1077546309341100.
- Numerical solution of ordinary and partial functional-differential eigenvalue problems with the tau method. Computing, 41(3):205–217, 1989.
- T. Luzyanina and K. Engelborghs. Computing Floquet multipliers for functional differential equations. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12(12):2977–2989, 2002. ISSN 0218-1274,1793-6551. 10.1142/S0218127402006291. URL https://doi.org/10.1142/S0218127402006291.
- MathWorks. ddensd: Solve delay differential equations (ddes) of neutral type, 2012. URL https://www.mathworks.com/help/matlab/ref/ddensd.html.
- An h–p version of the chebyshev spectral collocation method for nonlinear delay differential equations. Numerical Methods for Partial Differential Equations, 35(2):664–680, 2019.
- W. Michiels and S.-I. Niculescu. Stability and stabilization of time-delay systems: an eigenvalue-based approach. SIAM, 2007.
- The aaa algorithm for rational approximation. SIAM Journal on Scientific Computing, 40(3):A1494–A1522, 2018.
- The first five years of the aaa algorithm. arXiv preprint arXiv:2312.03565, 2023.
- K. W. Neves and A. Feldstein. Characterization of jump discontinuities for state dependent delay differential equations. J. Math. Anal. Appl., 56(3):689–707, 1976. ISSN 0022-247X. 10.1016/0022-247X(76)90033-0. URL https://doi.org/10.1016/0022-247X(76)90033-0.
- S. Olver and A. Townsend. A fast and well-conditioned spectral method. siam REVIEW, 55(3):462–489, 2013.
- D. Potts and G. Steidl. Fast summation at nonequispaced knots by NFFTs. SIAM J. Sci. Comput., 24(6):2013–2037, 2003. ISSN 1064-8275,1095-7197. 10.1137/S1064827502400984. URL https://doi.org/10.1137/S1064827502400984.
- F. A. Rihan. Delay differential equations and applications to biology. Forum for Interdisciplinary Mathematics. Springer, Singapore, 2021. ISBN 978-981-16-0625-0; 978-981-16-0626-7. 10.1007/978-981-16-0626-7. URL https://doi.org/10.1007/978-981-16-0626-7.
- E. Schröder. Ueber iterirte Functionen. Math. Ann., 3(2):296–322, 1870. ISSN 0025-5831,1432-1807. 10.1007/BF01443992. URL https://doi.org/10.1007/BF01443992.
- Numerical solution of the delay differential equations of pantograph type via chebyshev polynomials. Communications in Nonlinear Science and Numerical Simulation, 17(12):4815–4830, 2012.
- L. F. Shampine. Dissipative approximations to neutral DDEs. Appl. Math. Comput., 203(2):641–648, 2008. ISSN 0096-3003,1873-5649. 10.1016/j.amc.2008.05.010. URL https://doi.org/10.1016/j.amc.2008.05.010.
- L. F. Shampine and S. Thompson. Numerical solution of delay differential equations. In Delay differential equations, pages 245–271. Springer, New York, 2009. ISBN 978-0-387-85594-3.
- T. W. Tee. An adaptive rational spectral method for differential equations with rapidly varying solutions. PhD thesis, University of Oxford, 2006.
- L. N. Trefethen. Spectral methods in MATLAB, volume 10 of Software, Environments, and Tools. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. ISBN 0-89871-465-6. 10.1137/1.9780898719598. URL https://doi.org/10.1137/1.9780898719598.
- L. N. Trefethen. Approximation Theory and Approximation Practice, Extended Edition. SIAM, 2019.
- Exploring ODEs. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2017. 10.1137/1.9781611975161. URL https://epubs.siam.org/doi/abs/10.1137/1.9781611975161.
- D. Trif. Matrix based operatorial approach to differential and integral problems. MATLAB-A Ubiquitous Tool for the Practical Engineer, 2011.
- D. Trif. Chebpack, 2012. URL https://www.mathworks.com/matlabcentral/fileexchange/32227-chebpack.
- Y. Wei and Y. Chen. Legendre spectral collocation methods for pantograph volterra delay-integro-differential equations. Journal of Scientific Computing, 53:672–688, 2012.
- A MATLAB differentiation matrix suite. ACM Trans. Math. Software, 26(4):465–519, 2000. ISSN 0098-3500. 10.1145/365723.365727. URL https://doi.org/10.1145/365723.365727.
- Z. Wu and W. Michiels. Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method. Journal of Computational and Applied Mathematics, 236(9):2499–2514, 2012.
- K. Xu and N. Hale. Explicit construction of rectangular differentiation matrices. IMA Journal of Numerical Analysis, 36(2):618–632, 2016. 10.1093/imanum/drv013.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.