Tensor approximation of functional differential equations (2403.04946v1)
Abstract: Functional Differential Equations (FDEs) play a fundamental role in many areas of mathematical physics, including fluid dynamics (Hopf characteristic functional equation), quantum field theory (Schwinger-Dyson equation), and statistical physics. Despite their significance, computing solutions to FDEs remains a longstanding challenge in mathematical physics. In this paper we address this challenge by introducing new approximation theory and high-performance computational algorithms designed for solving FDEs on tensor manifolds. Our approach involves approximating FDEs using high-dimensional partial differential equations (PDEs), and then solving such high-dimensional PDEs on a low-rank tensor manifold leveraging high-performance parallel tensor algorithms. The effectiveness of the proposed approach is demonstrated through its application to the Burgers-Hopf FDE, which governs the characteristic functional of the stochastic solution to the Burgers equation evolving from a random initial state.
- D. Venturi, The numerical approximation of nonlinear functionals and functional differential equations, Physics Reports 732, 1 (2018).
- D. Venturi and A. Dektor, Spectral methods for nonlinear functionals and functional differential equations, Res. Math. Sci. 8, 1 (2021).
- E. Hopf, Statistical hydromechanics and functional calculus, J. Rat. Mech. Anal. 1, 87 (1952).
- A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence (Dover, 2007).
- K. Ohkitani, Study of the Hopf functional equation for turbulence: Duhamel principle and dynamical scaling, Phys. Rev. E 101, 013104 (2020).
- G. Rosen, Functional calculus theory for incompressible fluid turbulence, J. Math. Phys. 12, 812 (1971).
- N. Vakhania, V. Tarieladze, and S. Chobanyan, Probability distributions on Banach spaces, 1st ed. (Springer, 1987).
- C. Foias, Statistical study of Navier-Stokes equations, part I, Rend. Sem. Mat. Univ. Padova 48, 219 (1973).
- M. E. Peskin and D. V. Schroede, An introduction to quantum field theory (CRC Press, 2018).
- J. Zinn-Justin, Quantum field theory and critical phenomena, 4th ed. (Oxford Univ. Press, 2002).
- P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical dynamics of classical systems, Phys. Rev. A 8, 423 (1973).
- R. Phythian, The functional formalism of classical statistical dynamics, J. Phys A: Math. Gen. 10, 777 (1977).
- R. V. Jensen, Functional integral approach to classical statistical dynamics, J. Stat. Phys. 25, 183 (1981).
- R. Phythian, The operator formalism of classical statistical dynamics, J. Phys A: Math. Gen. 8, 1423 (1975).
- B. Jouvet and R. Phythian, Quantum aspects of classical and statistical fields, Phys. Rev. A 19, 1350 (1979).
- W. E, J. Han, and Q. Li, A mean-field optimal control formulation of deep learning, Res. Math. Sci. 6, 10 (2019).
- W. Gangbo, S. Mayorga, and A. Swiech, Finite dimensional approximations of Hamilton-Jacobi-Bellman equations in spaces of probability measures, SIMA. J. Math. Anal. 53, 1320 (2021).
- A. Rodgers, A. Dektor, and D. Venturi, Adaptive integration of nonlinear evolution equations on tensor manifolds, J. Sci. Comput. 92, 1 (2022).
- A. Rodgers and D. Venturi, Implicit integration of nonlinear evolution equations on tensor manifolds, J. Sci. Comput 97, 1 (2023).
- L. Berselli and S. Spirito, On the existence of Leray-Hopf weak solutions to the Navier-Stokes equations, Fluids 6, 6010042 (2021).
- G. Prodi, Un teorema di unicità per le equazioni di Navier–Stokes, Annali di Matematica 48, 173 (1959).
- J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63, 193 (1934).
- E. Fabes, B. Jones, and N. Rivière, The initial value problem for the navier-stokes equations with data in Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, Arch. Rational Mech. Anal. 45, 222 (1972).
- R. Temam, Navier-Stokes equations: theory and numerical analysis (AMS Chelsea Publishing, 1984).
- M. J. Vishik and A. V. Fursikov, Mathematical problems of statistical hydromechanics, 2nd ed. (Kluwer Academic Publishers, 1988).
- V. I. Gishlarkaev, Uniqueness of a solution to the Cauchy problem for the Hopf equation in the two-dimensional case, Journal of Mathematical Sciences 169, 64 (2010).
- T. Barker, Uniqueness results for weak Leray-Hopf solutions of the Navier-Stokes system with initial values in critical spaces, J. Math. Fluid Mech. 20, 133 (2018).
- T. Barker, About local continuity with respect to L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT initial data for energy solutions of the Navier-Stokes equations, Mathematische Annalen , https://doi.org/10.1007/s00208 (2020).
- T. Kato, Strong Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-solutions of the Navier-Stokes equation in ℝmsuperscriptℝ𝑚\mathbb{R}^{m}blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT, with applications to weak solutions, Math. Z. 187, 471 (1984).
- G. P. Galdi, On the relation between very weak and Leray-Hopf solutions to Navier–Stokes equations, Proc. Amer. Math. Soc. 147, 5349 (2019).
- S. Dubois, Uniqueness for some Leray–Hopf solutions to the Navier–Stokes, Journal of Differential Equations 189, 99 (2003).
- H. Fujita and T. Kato, On the Navier–Stokes initial value problem. I, Arch. Rational Mech. Anal. 16, 269 (1964).
- T. Buckmaster and V. Vicol, Nonuniqueness of weak solutions to the Navier–Stokes equation, Annals of Mathematics 189, 101 (2019).
- D. Kang and B. Protas, Searching for singularities in Navier–Stokes flows based on the Ladyzhenskaya–Prodi–Serrin conditions, J Nonlinear Sci 32, 1 (2022).
- E. Deriaz and V. Perrier, Divergence-free and curl-free wavelets in two dimensions and three dimensions: application to turbulent flows, Journal of Turbulence 7, 1 (2006).
- E. Deriaz and V. Perrier, Direct numerical simulation of turbulence using divergence-free wavelets, Multiscale Model. Simul. 7, 1101 (2008).
- E. J. Fuselier and G. B. Wright, A radial basis function method for computing Helmholtz–Hodge decompositions, IMA J. Numer. Anal. 37, 774 (2017).
- G. Sacchi-Landriani and H. Vandeven, Polynomial approximation of divergence-free functions, Mathematics of Computation 185, 103 (1989).
- K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Vol. 194 (Springer, 1999).
- D. Guidetti, B. Karasozen, and S. Piskarev, Approximation of abstract differential equations, Journal of Mathematical Sciences 122, 3013 (2004).
- A. M. P. Boelens, D. Venturi, and D. M. Tartakovsky, Tensor methods for the Boltzmann-BGK equation, J. Comput. Phys. 421, 109744 (2020).
- G. di Marco and L. Pareschi, Numerical methods for kinetic equations, Acta Numerica 23, 369 (2014).
- H. J. Bungartz and M. Griebel, Sparse grids, Acta Numerica 13, 147 (2004).
- V. Barthelmann, E. Novak, and K. Ritter, High dimensional polynomial interpolation on sparse grids, Advances in Computational Mechanics 12, 273 (2000).
- A. Narayan and J. Jakeman, Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation, SIAM J. Sci. Comput. 36, A2952 (2014).
- M. Raissi and G. E. Karniadakis, Hidden physics models: Machine learning of nonlinear partial differential equations, J. Comput. Phys. 357, 125 (2018).
- M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378, 606 (2019).
- M. Bachmayr, R. Schneider, and A. Uschmajew, Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations, Foundations of Computational Mathematics 16, 1423 (2016).
- A. M. P. Boelens, D. Venturi, and D. M. Tartakovsky, Parallel tensor methods for high-dimensional linear PDEs, J. Comput. Phys. 375, 519 (2018).
- A. Dektor and D. Venturi, Tensor rank reduction via coordinate flows, J. Comp. Phys. 491, 112378 (2023).
- A. Dektor and D. Venturi, Coordinate-adaptive integration of PDEs on tensor manifolds, Comm. Appl. Math. Comput. , https://doi.org/10.1007/s42967 (2024).
- H. Cho, D. Venturi, and G. E. Karniadakis, Numerical methods for high-dimensional kinetic equations, in Uncertainty quantification for kinetic and hyperbolic equations, edited by S. Jin and L. Pareschi (Springer, 2017) pp. 93–125.
- S. V. Dolgov, TT-GMRES: solution to a linear system in the structured tensor format, Russian Journal of Numerical Analysis and Mathematical Modelling 28, 149 (2013).
- G. Beylkin and M. J. Mohlenkamp, Numerical operator calculus in higher dimensions, PNAS 99, 10246 (2002).
- A. Dektor and D. Venturi, Dynamic tensor approximation of high-dimensional nonlinear PDEs, J. Comput. Phys. 437, 110295 (2021a).
- D. Bigoni, A. P. Engsig-Karup, and Y. M. Marzouk, Spectral tensor-train decomposition, SIAM J. Sci. Comput. 38, A2405 (2016).
- I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput. 33, 2295– (2011a).
- R. Schneider and A. Uschmajew, Approximation rates for the hierarchical tensor format in periodic Sobolev spaces, J. Complexity 30, 56 (2014).
- L. Grasedyck and C. Löbbert, Distributed hierarchical SVD in the hierarchical Tucker format, Numer. Linear Algebra Appl. 25, e2174 (2018).
- A. Etter, Parallel ALS algorithm for solving linear systems in the hierarchical Tucker representation, SIAM J. Sci. Comput. 38, A2585–A2609 (2016).
- A. Uschmajew and B. Vandereycken, The geometry of algorithms using hierarchical tensors, Linear Algebra Appl. 439, 133 (2013a).
- A. Dektor, A. Rodgers, and D. Venturi, Rank-adaptive tensor methods for high-dimensional nonlinear PDEs, J. Sci. Comput. 88, 1 (2021).
- M. Griebel and G. Li, On the decay rate of the singular values of bivariate functions, SIAM J. Numer. Anal. 56, 974 (2019).
- A. Rodgers and D. Venturi, Stability analysis of hierarchical tensor methods for time-dependent PDEs, J. Comput. Phys. 409, 109341 (2020).
- T. Kato, Perturbation theory for linear operators, Classics in Mathematics (Springer-Verlag, Berlin, 1995) pp. xxii+619, reprint of the 1980 edition.
- A. Uschmajew and B. Vandereycken, The geometry of algorithms using hierarchical tensors, Linear Algebra Appl. 439, 133 (2013b).
- D. Kressner and C. Tobler, Algorithm 941: htucker – a Matlab toolbox for tensors in hierarchical Tucker format, ACM Transactions on Mathematical Software 40, 1 (2014).
- H. Cho, D. Venturi, and G. E. Karniadakis, Statistical analysis and simulation of random shocks in Burgers equation, Proc. R. Soc. A 2171, 1 (2014).
- J. S. Hesthaven, Numerical Methods for Conservation Laws: From Analysis to Algorithm, 1st ed. (SIAM, 2018).
- J. S. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral methods for time-dependent problems (Cambridge Univ. Press, 2007).
- Z. Botev, J. Grotowski, and D. Kroese, Kernel density estimation via diffusion, Annals of Statistics , 2916 (2010).
- L. Einkemmer and C. Lubich, A low-rank projector-splitting integrator for the Vlasov-Poisson equation, SIAM J. Sci. Comput. 40, B1330 (2018).
- L. Einkemmer and C. Lubich, A quasi-conservative dynamical low-rank algorithm for the Vlasov equation, SIAM J. Sci. Comput. 41, B1061 (2019).
- I. Oseledets and E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra and its Applications 432, 70 (2010).
- A. Dektor and D. Venturi, Dynamically orthogonal tensor methods for high-dimensional nonlinear PDEs, J. Comput. Phys. 404, 109125 (2020).
- A. Dektor and D. Venturi, Dynamic tensor approximation of high-dimensional nonlinear PDEs, J. Comput. Phys. 437, 110295 (2021b).
- I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific Computing 33, 2295 (2011b), https://doi.org/10.1137/090752286 .
- H. A. Daas, G. Ballard, and P. Benner, Parallel algorithms for tensor train arithmetic, SIAM J. Sci. Comput. 44, C25 (2022).