Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A measurement of the sodium and iodine scintillation quenching factors across multiple NaI(Tl) detectors to identify systematics (2402.12480v2)

Published 19 Feb 2024 in hep-ex, astro-ph.CO, astro-ph.IM, hep-ph, and nucl-ex

Abstract: The amount of light produced by nuclear recoils in scintillating targets is strongly quenched compared to that produced by electrons. A precise understanding of the quenching factor is particularly interesting for WIMP searches and CE{\nu}NS measurements since both rely on nuclear recoils, whereas energy calibrations are more readily accessible from electron recoils. There is a wide variation among the current measurements of the quenching factor in sodium iodide (NaI) crystals, especially below 10 keV, the energy region of interest for dark matter and CE{\nu}NS studies. A better understanding of the quenching factor in NaI(Tl) is of particular interest for resolving the decades-old puzzle in the field of dark matter between the null results of most WIMP searches and the claim for dark matter detection by the DAMA/LIBRA collaboration. In this work, we measured sodium and iodine quenching factors for five small NaI(Tl) crystals grown with similar thallium concentrations and growth procedures. Unlike previous experiments, multiple crystals were tested, with measurements made in the same experimental setup to control systematic effects. The quenching factors agree in all crystals we investigated, and both sodium and iodine quenching factors are smaller than those reported by DAMA/LIBRA. The dominant systematic effect was due to the electron equivalent energy calibration originating from the non-proportional behavior of the NaI(Tl) light yield at lower energies, potentially the cause for the discrepancies among the previous measurements.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. G. F. Knoll, Radiation Detection and Measurement, 4th ed. (John Wiley & Sons, Inc., 2010) Chap. 8.
  2. G. Alner et al. (UK Dark Matter Collaboration), Limits on WIMP cross-sections from the NAIAD experiment at the Boulby Underground Laboratory, Phys. Lett. B 616, 17 (2005).
  3. G. Adhikari et al. (COSINE-100 Collaboration), Initial performance of the COSINE-100 experiment, Eur. Phys. J. C 78, 107 (2018a).
  4. J. Amaré et al. (ANAIS Collaboration), Performance of ANAIS-112 experiment after the first year of data taking, Eur. Phys. J. C 79, 228 (2019a).
  5. R. Bernabei et al., The DAMA project: Achievements, implications and perspectives, Prog. Part. Nucl. Phys. 114, 103810 (2020).
  6. M. Antonello et al. (SABRE), The SABRE project and the SABRE Proof-of-Principle, Eur. Phys. J. C 79, 363 (2019).
  7. G. Angloher et al. (COSINUS), Deep-underground dark matter search with a COSINUS detector prototype,   (2023).
  8. P. An et al. (COHERENT), Measurement of the inclusive electron-neutrino charged-current cross section on 127127{}^{127}start_FLOATSUPERSCRIPT 127 end_FLOATSUPERSCRIPTI with the COHERENT NaIν𝜈\nuitalic_νE detector,   (2023), arXiv:2305.19594 [nucl-ex] .
  9. J. J. Choi et al., Exploring coherent elastic neutrino-nucleus scattering using reactor electron antineutrinos in the neon experiment, The European Physical Journal C 83, 226 (2023).
  10. N. Spooner et al., The scintillation efficiency of sodium and iodine recoils in a NaI(Tl) detector for dark matter searches, Phys. Lett. B 321, 156 (1994).
  11. R. Bernabei et al., New limits on WIMP search with large-mass low-radioactivity NaI(Tl) set-up at Gran Sasso, Phys. Lett. B 389, 757 (1996).
  12. G. Gerbier et al., Pulse shape discrimination and dark matter search with NaI(Tl) scintillator, Astropart. Phys. 11, 287 (1999).
  13. E. Simon et al., SICANE: a detector array for the measurement of nuclear recoil quenching factors using a monoenergetic neutron beam, Nucl. Instrum. Meth. A 507, 643 (2003).
  14. H. Chagani et al., Measurement of the quenching factor of Na recoils in NaI(Tl), J. Instr. 3, P06003 (2008).
  15. J. I. Collar, Quenching and channeling of nuclear recoils in NaI(Tl): Implications for dark-matter searches, Phys. Rev. C 88, 035806 (2013).
  16. J. Xu et al., Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold, Phys. Rev. C 92, 015807 (2015).
  17. T. Stiegler et al., A study of the NaI(Tl) detector response to low energy nuclear recoils and a measurement of the quenching factor in NaI(Tl) (2017), arXiv:1706.07494 [physics.ins-det] .
  18. H. Joo et al., Quenching factor measurement for NaI(Tl) scintillation crystal, Astropart. Phys. 108, 50 (2019).
  19. L. J. Bignell et al., SABRE and the Stawell Underground Physics Laboratory Dark Matter Research at the Australian National University, EPJ Web Conf. 232, 01002 (2020).
  20. D. Akimov et al. (COHERENT Collaboration), Observation of coherent elastic neutrino-nucleus scattering, Science 357, 1123 (2017).
  21. J. Amaré et al., First Results on Dark Matter Annual Modulation from the ANAIS-112 Experiment, Phys. Rev. Lett. 123, 031301 (2019b).
  22. J. Amaré et al., ANAIS-112 status: two years results on annual modulation, J. Phys. Conf. Ser. 1468, 012014 (2020).
  23. J. Amaré et al., Annual modulation results from three-year exposure of ANAIS-112, Phys. Rev. D 103, 102005 (2021).
  24. I. Coarasa et al., ANAIS−--112: updated results on annual modulation with three-year exposure, PoS TAUP2023, 041 (2024), arXiv:2311.03392 [astro-ph.IM] .
  25. G. Adhikari et al. (COSINE-100 Collaboration), An experiment to search for dark-matter interactions using sodium iodide detectors, Nature 564, 83 (2018b).
  26. G. Adhikari et al. (COSINE-100 Collaboration), Search for a Dark Matter-Induced Annual Modulation Signal in NaI(Tl) with the COSINE-100 Experiment, Phys. Rev. Lett. 123, 031302 (2019).
  27. I. Coarasa et al., Improving ANAIS-112 sensitivity to DAMA/LIBRA signal with machine learning techniques, JCAP 11, 048.
  28. Y. Ko et al. (COSINE-100 Collaboration), Comparison between DAMA/LIBRA and COSINE-100 in the light of quenching factors, JCAP 2019 (11), 008.
  29. J. I. Collar, A. R. L. Kavener, and C. M. Lewis, Response of CsI[Na] to nuclear recoils: Impact on coherent elastic neutrino-nucleus scattering, Phys. Rev. D 100, 033003 (2019).
  30. S. Agostinelli et al., Geant4 — a simulation toolkit, Nucl. Instrum. Meth. A 506, 250 (2003).
  31. S. A. Pozzi, E. Padovani, and M. Marseguerra, MCNP-PoliMi: a Monte-Carlo code for correlation measurements, Nucl. Instrum. Meth. A 513, 550 (2003).
  32. M. R. Bharadwaj et al., Quenching Factor estimation of Na recoils in NaI(Tl) crystals using a low-energy pulsed neutron beam measurement, SciPost Phys. Proc. 12, 028 (2023).
  33. J. F. Ziegler, M. Ziegler, and J. Biersack, SRIM – The stopping and range of ions in matter (2010), Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 1818 (2010), 19th International Conference on Ion Beam Analysis.
  34. H. Liskien and A. Paulsen, Neutron production cross sections and energies for the reactions 7Li(p,n)7Be and 7Li(p,n)7Be⋆⋆{}^{\star}start_FLOATSUPERSCRIPT ⋆ end_FLOATSUPERSCRIPT, Atomic Data and Nuclear Data Tables 15, 57 (1975).
  35. W. Verkerke and D. Kirkby, The RooFit toolkit for data modeling (2003), arXiv:physics/0306116 [physics.data-an] .
  36. B. Rooney and J. Valentine, Scintillator light yield nonproportionality: calculating photon response using measured electron response, IEEE Transactions on Nuclear Science 44, 509 (1997).
  37. I. V. Khodyuk, P. A. Rodnyi, and P. Dorenbos, Nonproportional scintillation response of NaI:Tl to low energy x-ray photons and electrons, Journal of Applied Physics 107, 113513 (2010), https://pubs.aip.org/aip/jap/article-pdf/doi/10.1063/1.3431009/13198653/113513_1_online.pdf .
  38. R. Bernabei et al. (DAMA/LIBRA Collaboration), Dark matter investigation by DAMA at Gran Sasso, Int. J. Mod. Phys. B 28, 1330022 (2013).
  39. T. Pardo et al., Neutron calibrations in dark matter searches: the ANAIS-112 case, PoS TAUP2023, 078 (2024), arXiv:2311.07290 [astro-ph.IM] .
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: