Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Rejection of Bounded Perturbations in Linear Leader-Following Consensus Protocol: Method Invariant Ellipsoid (2402.12468v1)

Published 19 Feb 2024 in math.OC

Abstract: The objective of the invariant ellipsoid method is to minimize the smallest invariant and attractive set of a linear control system operating under the influence of bounded external disturbances. In this paper, this method is extended into the leader-following consensus problem. Initially, a linear control protocol is designed for the Multi-agent System without disturbances. Subsequently, in the presence of bounded disturbances, by employing a similar linear control protocol, a necessary and sufficient condition is introduced to derive the optimal control parameters for the MAS such that the state of followers converge and remain in an minimal invariant ellipsoid around the state of the leader.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on automatic control, vol. 49, no. 9, pp. 1520–1533, 2004.
  2. S. Mastellone, D. M. Stipanović, C. R. Graunke, K. A. Intlekofer, and M. W. Spong, “Formation control and collision avoidance for multi-agent non-holonomic systems: Theory and experiments,” The International Journal of Robotics Research, vol. 27, no. 1, pp. 107–126, 2008.
  3. M. Huo, H. Duan, and Y. Fan, “Pigeon-inspired circular formation control for multi-uav system with limited target information,” Guidance, Navigation and Control, vol. 1, no. 01, p. 2150004, 2021.
  4. Z. Li, W. Ren, X. Liu, and M. Fu, “Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders,” International Journal of Robust and Nonlinear Control, vol. 23, no. 5, pp. 534–547, 2013.
  5. S. Park and N. C. Martins, “Design of distributed lti observers for state omniscience,” IEEE Transactions on Automatic Control, vol. 62, no. 2, pp. 561–576, 2016.
  6. Y. DÃaz, J. Dávila, and M. Mera, “Leader-follower formation of unicycle mobile robots using sliding mode control,” IEEE Control Systems Letters, vol. 7, pp. 883–888, 2023.
  7. Y. Zhai, Z.-W. Liu, Z.-H. Guan, and Z. Gao, “Resilient delayed impulsive control for consensus of multiagent networks subject to malicious agents,” IEEE Transactions on Cybernetics, vol. 52, no. 7, pp. 7196–7205, 2022.
  8. X. Hu, Z.-W. Liu, G. Wen, X. Yu, and C. Liu, “Voltage control for distribution networks via coordinated regulation of active and reactive power of dgs,” IEEE Transactions on Smart Grid, vol. 11, no. 5, pp. 4017–4031, 2020.
  9. W. Ni and D. Cheng, “Leader-following consensus of multi-agent systems under fixed and switching topologies,” Systems & control letters, vol. 59, no. 3-4, pp. 209–217, 2010.
  10. V. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions on Automatic control, vol. 22, no. 2, pp. 212–222, 1977.
  11. S. L. Waslander, G. M. Hoffmann, J. S. Jang, and C. J. Tomlin, “Multi-agent quadrotor testbed control design: Integral sliding mode vs. reinforcement learning,” in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2005, pp. 3712–3717.
  12. H. Kimura, “Robust stabilizability for a class of transfer functions,” IEEE Transactions on Automatic Control, vol. 29, no. 9, pp. 788–793, 1984.
  13. Z. Li, Z. Duan, and G. Chen, “On h∞subscriptℎh_{\infty}italic_h start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT and h2subscriptℎ2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT performance regions of multi-agent systems,” Automatica, vol. 47, no. 4, pp. 797–803, 2011.
  14. S. A. Nazin, B. T. Polyak, and M. Topunov, “Rejection of bounded exogenous disturbances by the method of invariant ellipsoids,” Automation and Remote Control, vol. 68, no. 3, pp. 467–486, 2007.
  15. C. Deng and G.-H. Yang, “Consensus of linear multiagent systems with actuator saturation and external disturbances,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 3, pp. 284–288, 2016.
  16. M. Rubagotti, A. Estrada, F. Castaños, A. Ferrara, and L. Fridman, “Integral sliding mode control for nonlinear systems with matched and unmatched perturbations,” IEEE Transactions on Automatic Control, vol. 56, no. 11, pp. 2699–2704, 2011.
  17. G. Zames, “Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses,” IEEE Transactions on automatic control, vol. 26, no. 2, pp. 301–320, 1981.
  18. D. Bertsekas and I. Rhodes, “Recursive state estimation for a set-membership description of uncertainty,” IEEE Transactions on Automatic Control, vol. 16, no. 2, pp. 117–128, 1971.
  19. J. Glover and F. Schweppe, “Control of linear dynamic systems with set constrained disturbances,” IEEE Transactions on Automatic Control, vol. 16, no. 5, pp. 411–423, 1971.
  20. F. Schweppe, “Recursive state estimation: Unknown but bounded errors and system inputs,” IEEE Transactions on Automatic Control, vol. 13, no. 1, pp. 22–28, 1968.
  21. M. V. Khlebnikov, B. T. Polyak, and V. M. Kuntsevich, “Optimization of linear systems subject to bounded exogenous disturbances: The invariant ellipsoid technique,” Automation and Remote Control, vol. 72, no. 11, pp. 2227–2275, 2011.
  22. L. Beji, R. Mlayeh, and N. Zoghlami, “Invariant sets in finite-time stability of multi-mobile robots,” in 2015 American Control Conference (ACC).   IEEE, 2015, pp. 1059–1064.
  23. Z. She, Q. Hao, Q. Liang, and L. Wang, “Invariant set based distributed protocol for synchronization of discrete-time heterogeneous systems with nonlinear dynamics,” ISA transactions, vol. 102, pp. 56–67, 2020.
  24. Z.-H. Guan, Z.-W. Liu, G. Feng, and M. Jian, “Impulsive consensus algorithms for second-order multi-agent networks with sampled information,” Automatica, vol. 48, no. 7, pp. 1397–1404, 2012.
  25. J. Fax and R. Murray, “Information flow and cooperative control of vehicle formations,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1465–1476, 2004.
  26. Z. Li, Z. Duan, G. Chen, and L. Huang, “Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 1, pp. 213–224, 2010.
  27. J. B. Rejeb, I.-C. Morărescu, and J. Daafouz, “Synchronization in networks of linear singularly perturbed systems,” in 2016 American Control Conference (ACC).   IEEE, 2016, pp. 4293–4298.
  28. B. T. Polyak, “Convexity of quadratic transformations and its use in control and optimization,” Journal of Optimization Theory and Applications, vol. 99, no. 3, pp. 553–583, 1998.
  29. B. Polyak and P. Shcherbakov, “Robastnaya ustoichivost’i upravlenie,” 2002.
  30. “Yalmip bmi solver : Bmibnb.” [Online]. Available: https://yalmip.github.io/solver/bmibnb/

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: