Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Significance of Chirp MFCC as a Feature in Speech and Audio Applications (2402.12239v1)

Published 19 Feb 2024 in eess.SP, cs.SD, and eess.AS

Abstract: A novel feature, based on the chirp z-transform, that offers an improved representation of the underlying true spectrum is proposed. This feature, the chirp MFCC, is derived by computing the Mel frequency cepstral coefficients from the chirp magnitude spectrum, instead of the Fourier transform magnitude spectrum. The theoretical foundations for the proposal, and the experimental validation using product of likelihood Gaussians, to show the improved class separation offered by the proposed chirp MFCC, when compared with vanilla MFCC are discussed. Further, real world evaluation of the feature is performed using three diverse tasks, namely, speech-music classification, speaker identification, and speech commands recognition. It is shown in all three tasks that the proposed chirp MFCC offers considerable improvements.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com