Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Windowing Technique for Efficient Computation of MFCC for Speaker Recognition (1206.2437v1)

Published 12 Jun 2012 in cs.CV

Abstract: In this paper, we propose a novel family of windowing technique to compute Mel Frequency Cepstral Coefficient (MFCC) for automatic speaker recognition from speech. The proposed method is based on fundamental property of discrete time Fourier transform (DTFT) related to differentiation in frequency domain. Classical windowing scheme such as Hamming window is modified to obtain derivatives of discrete time Fourier transform coefficients. It has been mathematically shown that the slope and phase of power spectrum are inherently incorporated in newly computed cepstrum. Speaker recognition systems based on our proposed family of window functions are shown to attain substantial and consistent performance improvement over baseline single tapered Hamming window as well as recently proposed multitaper windowing technique.

Citations (80)

Summary

We haven't generated a summary for this paper yet.