Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature extraction with mel scale separation method on noise audio recordings (2112.14930v1)

Published 30 Dec 2021 in cs.SD and eess.AS

Abstract: This paper focuses on improving the accuracy of noise audio recordings. High-quality audio recording, extraction using the mel frequency cepstral coefficients (MFCC) method produces high accuracy. While the low-quality is because of noise, the accuracy is low. Improved accuracy by investigating the effect of bandwidth on the mel scale. The proposed improvement uses the mel scale separation methods into two frequency channels (MFCC dual channel). For the comparison method using the mel scale bandwidth without separation (MFCC single-channel). Feature analysis using k-mean clustering. The data uses a noise variance of up to -16 dB. Testing on the MFCC single channel method for -16 dB noise has an accuracy of 47.5%, while the MFCC dual-channel method has an accuracy better of 76.25%. The next test used adaptive noise-canceling (ANC) to reduce noise before extraction. The result is that the MFCC single-channel method has an accuracy of 82.5% and the MFCC dual-channel method has an accuracy better of 83.75%. High-quality audio recording testing for the MFCC single-channel method has an accuracy of 92.5% and the MFCC dual-channel method has an accuracy better of 97.5%. The test results show the effect of mel scale bandwidth to increase accuracy. The MFCC dual-channel method has higher accuracy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.