Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Non-magnetic layers with a single Dirac cone at high-symmetry point of the Brillouin zone (2402.11982v2)

Published 19 Feb 2024 in cond-mat.mes-hall

Abstract: It is well known that a single Dirac cone at high-symmetry point (HSP) of a Brillouin zone, akin to the one in graphenes' band structure, can not appear as the only quasiparticle at the Fermi level in two-dimensional (2D), non-magnetic materials. Here we found two layer groups with time-reversal symmetry, among all possible both without- and with spin-orbit coupling, that host one Dirac cone at HSP and we show which additional dispersions appear: a pair of Dirac lines on opposite BZ edges and a pair of Dirac cones that can be moved but not removed by symmetry preserving perturbations, on the other two BZ edges. We illustrate our theory by a tight-binding band structure and discuss real 2D materials that belong to one of the two symmetry groups. Finally, we single out inconsistencies in the literature showing that it is better to focus scientist attention to a research topics itself, instead to group of authors only (e.g. from one university, country etc.) dealing with the same topics. On the other hand, repetitions of other scientist results without due citation, destroys the spirit of science itself.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and DiracDirac\mathrm{Dirac}roman_Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90, 015001 (2018).
  2. J. L. Mañes, Existence of bulk chiral fermions and crystal symmetry, Phys. Rev. B 85, 155118 (2012).
  3. F. Tang and X. Wan, Exhaustive construction of effective models in 1651 magnetic space groups, Phys. Rev. B 104, 085137 (2021).
  4. M. Damnjanović and I. Milošević, Full symmetry implementation in condensed matter and molecular physics—modified group projector technique, Physics Reports 581, 1 (2015).
  5. N. Lazić, M. Milivojević, and M. Damnjanović, Spin line groups, Acta Crystallographica Section A 69, 611 (2013), https://onlinelibrary.wiley.com/doi/pdf/10.1107/S0108767313022642 .
  6. N. Lazić and M. Damnjanović, Spin ordering in RKKYRKKY\mathrm{RKKY}roman_RKKY nanowires: Controllable phases in C13superscriptC13{}^{13}\mathrm{C}start_FLOATSUPERSCRIPT 13 end_FLOATSUPERSCRIPT roman_C nanotubes, Phys. Rev. B 90, 195447 (2014).
  7. N. Lazić, QUASI-CLASSICAL GROUND STATES AND MAGNONS IN MONOPERIODIC SPIN SYSTEMS, Ph.D. thesis, Faculty of Physics, University of Belgrade (2016).
  8. D. B. Litvin and T. R. Wike, Character Tables and Compatibility Relations of the Eighty Layer Groups and Seventeen Plane Groups (Plenum Press, New York, 1991).
  9. V. Damljanović, R. Kostić, and R. Gajić, Characters of graphene’s symmetry group Dg80Dg80\mathrm{Dg80}Dg80, Physica Scripta 2014, 014022 (2014).
  10. V. Damljanović and N. Lazić, Electronic structures near unmovable nodal points and lines in two-dimensional materials, Journal of Physics A: Mathematical and Theoretical 56, 215201 (2023).
  11. S. M. Young and C. L. Kane, Dirac semimetals in two dimensions, Phys. Rev. Lett. 115, 126803 (2015).
  12. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Butterworth-Heinemann, Oxford, 1981).
  13. J. v. Neumann and E. Wigner, UU\mathrm{U}roman_Ueber das VV\mathrm{V}roman_Verhalten von EE\mathrm{E}roman_Eigenwerten bei adiabatischen PP\mathrm{P}roman_Prozessen, Physikalische Zeitschrift 30, 467 (1929).
  14. J. v. Neumann and E. Wigner, On the behaviour of eigenvalues in adiabatic processes, in Quantum Chemistry: Classic Scientific Papers, edited by H. Hettema (World Scientific, Singapore, 2000) pp. 25–31.
  15. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Butterworth-Heinemann, Oxford, 1982).
  16. J. F. Cornwell, Group Theory in Physics Volume 1 (Academic Press, London, 1984).
  17. V. Kopsky and D. B. Litvin, International Tables of Crystallography Volume E: Subperiodic Groups (Kluwer Academic Publishers, Dordrecht, 2002).
  18. T. Hahn, International Tables of Crystallography Volume A: Space-Group Symmetry (Springer, Dordrecht, 2005).
  19. K. Momma and F. Izumi, VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data, Journal of Applied Crystallography 44, 1272 (2011).
  20. B. J. Wieder and C. L. Kane, Spin-orbit semimetals in the layer groups, Phys. Rev. B 94, 155108 (2016).
  21. V. Damljanović and R. Gajić, Existence of semi−DiracsemiDirac\mathrm{semi-Dirac}roman_semi - roman_Dirac cones and symmetry of two-dimensional materials, Journal of Physics: Condensed Matter 29, 185503 (2017).
  22. V. Pardo and W. E. Pickett, Half-metallic semi-DD\mathrm{D}roman_Dirac-point generated by quantum confinement in TiO2subscriptTiO2\mathrm{TiO_{2}}roman_TiO start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT/VO2subscriptVO2\mathrm{VO_{2}}roman_VO start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT nanostructures, Phys. Rev. Lett. 102, 166803 (2009).
  23. V. Damljanović, I. Popov, and R. Gajić, Fortune teller fermions in two-dimensional materials, Nanoscale 9, 19337 (2017).
  24. V. Damljanović and R. Gajić, Existence of DiracDirac\mathrm{Dirac}roman_Dirac cones in the BrillouinBrillouin\mathrm{Brillouin}roman_Brillouin zone of diperiodic atomic crystals according to group theory, Journal of Physics: Condensed Matter 28, 085502 (2016a).
  25. V. Damljanović and R. Gajić, Addendum to ‘ExistenceExistence\mathrm{Existence}roman_Existence of DiracDirac\mathrm{Dirac}roman_Dirac cones in the BrillouinBrillouin\mathrm{Brillouin}roman_Brillouin zone of diperiodic atomic crystals according to group theory’, Journal of Physics: Condensed Matter 28, 439401 (2016b).
  26. V. Damljanović and R. Gajić, Phonon eigenvectors of graphene at high-symmetry points of the BB\mathrm{B}roman_Brillouin zone, Physica Scripta 2012, 014067 (2012).
  27. M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory (Springer, Berlin, 2007).
  28. S. M. Young and B. J. Wieder, Filling-enforced magnetic DD\mathrm{D}roman_Dirac semimetals in two dimensions, Phys. Rev. Lett. 118, 186401 (2017).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube