Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Linear Landau damping for the Vlasov-Maxwell system in $\mathbb{R}^3$ (2402.11402v1)

Published 17 Feb 2024 in math.AP, math-ph, and math.MP

Abstract: In this work, we consider the relativistic Vlasov-Maxwell system, linearized around a spatially homogeneous equilibrium, set in the whole space $\mathbb{R}3 \times \mathbb{R}3$. The equilibrium is assumed to belong to a class of radial, smooth, rapidly decaying functions. Under appropriate conditions on the initial data, we prove algebraic decay (of dispersive nature) for the electromagnetic field. For the electric scalar potential, the leading behavior is driven by a dispersive wave packet with non-degenerate phase and compactly supported amplitude, while for the magnetic vector potential, it is driven by a wave packet whose phase behaves globally like the one of Klein-Gordon and the amplitude has unbounded support.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: