Papers
Topics
Authors
Recent
2000 character limit reached

Assessing PIP and sGDML Potential Energy Surfaces for H3O2- (2402.11158v1)

Published 17 Feb 2024 in physics.chem-ph

Abstract: Here we assess two machine-learned potentials, one using the symmetric gradient domain machine learning (sGDML) method and one based on permutationally invariant polynomials (PIPs). These are successors to a PIP potential energy surface (PES) reported in 2004. We describe the details of both fitting methods and then compare the two PESs with respect to precision, properties, and speed of evaluation. While the precision of the potentials is similar, the PIP PES is much faster to evaluate for energies and energies plus gradient than the sGDML one. Diffusion Monte Carlo calculations of the ground vibrational state, using both potentials, produce similar large anharmonic downshift of the zero-point energy compared to the harmonic approximation the PIP and sGDML potentials. The computational time for these calculations using the sGDML PES is roughly 300 times greater than using the PIP one.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.