2000 character limit reached
    
  Intersection of Parabolic Subgroups in Euclidean Braid Groups: a short proof (2402.10919v1)
    Published 24 Jan 2024 in math.GR
  
  Abstract: We give a short proof for the fact, already proven by Thomas Haettel, that the arbitrary intersection of parabolic subgroups in Euclidean Braid groups $A[\tilde{A}n]$ is again a parabolic subgroup. To that end, we use that the spherical-type Artin group $A[B{n+1}]$ is isomorphic to $A[\tilde{A}_n] \rtimes \mathbb{Z}$.
- The K(π,1)𝐾𝜋1K(\pi,1)italic_K ( italic_π , 1 )-Problem for Hyperplane Complements Associated to Infinite Reflection Groups. J. Amer. Math. Soc., 8(3), 597–627.
- Cohomology of Coxeter groups and Artin groups. Mathematical Research Letters, 7(03), 213–232.
- On parabolic subgroups of Artin–Tits groups of spherical type. Adv. Math., 352, 572 – 610.
- Parabolic subgroups of large-type Artin groups. Mathematical Proceedings of the Cambridge Philosophical Society, 174(2), 393–414.
- Haettel, Thomas. 2021. Lattices, injective metrics and the K(π,1)𝐾𝜋1K(\pi,1)italic_K ( italic_π , 1 ) conjecture. Algebraic & Geometric Topology (to appear). arXiv:2109.07891.
- A Geometric and Algebraic Description of Annular Braid Groups. IJAC, 12(02), 85–97.
- Paris, Luis. 2014. K(π,1)𝐾𝜋1K(\pi,1)italic_K ( italic_π , 1 ) conjecture for Artin groups. Annales de la Faculté des sciences de Toulouse : Mathématiques, Ser. 6, 23(2), 361–415.
- Van der Lek, Harm. 1983. The Homotopy Type of Complex Hyperplane Complements. Ph.D. thesis, Nijmegen.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.