Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Simultaneous symmetry breaking in spontaneous Floquet states: Floquet-Nambu-Goldstone modes, Floquet thermodynamics, and the time operator (2402.10784v3)

Published 16 Feb 2024 in quant-ph, cond-mat.quant-gas, and nlin.PS

Abstract: We study simultaneous symmetry-breaking in a spontaneous Floquet state, focusing on the specific case of an atomic condensate. We first describe the quantization of the Nambu-Goldstone (NG) modes for a stationary state simultaneously breaking several symmetries of the Hamiltonian by invoking the generalized Gibbs ensemble, which enables a thermodynamical description of the problem. The quantization procedure involves a Berry-Gibbs connection, which depends on the macroscopic conserved charges associated to each broken symmetry and whose curvature is not invariant under generalized gauge transformations. We extend the formalism to Floquet states simultaneously breaking several symmetries, where Goldstone theorem translates into the emergence of Floquet-Nambu-Goldstone (FNG) modes with zero quasi-energy. In the case of a spontaneous Floquet state, there is a genuine temporal FNG mode arising from the continuous time-translation symmetry breaking, whose quantum amplitude provides a rare realization of a time operator in Quantum Mechanics. Furthermore, since they conserve energy, spontaneous Floquet states can be shown to possess a conserved Floquet charge. Conventional Floquet systems also admit a thermodynamic description in terms of the Floquet enthalpy, the Legendre transform of the energy with respect to the Floquet charge. We apply our formalism to a particular realization of spontaneous Floquet state, the CES state, which breaks $U(1)$ and time-translation symmetries, representing a time supersolid. Using the Truncated Wigner method, we numerically compute its quantum fluctuations, which are theoretically predicted to be dominated by the temporal FNG mode at long times, observing a remarkable agreement between simulation and theory. Based on these results, we propose a feasible experimental scheme to observe the temporal FNG mode of the CES state.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (114)
  1. Herbert B Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985).
  2. Julian Léonard, Andrea Morales, Philip Zupancic, Tilman Esslinger,  and Tobias Donner, “Supersolid formation in a quantum gas breaking a continuous translational symmetry,” Nature 543, 87–90 (2017).
  3. Jun-Ru Li, Jeongwon Lee, Wujie Huang, Sean Burchesky, Boris Shteynas, Furkan Çağrı Top, Alan O Jamison,  and Wolfgang Ketterle, “A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates,” Nature 543, 91–94 (2017).
  4. Zyun Francis Ezawa, Quantum Hall effects: Field theoretical approach and related topics (World scientific, 2008).
  5. Maxim Kharitonov, “Canted Antiferromagnetic Phase of the ν=0𝜈0\nu=0italic_ν = 0 Quantum Hall State in Bilayer Graphene,” Phys. Rev. Lett. 109, 046803 (2012).
  6. Alexis Coissard, David Wander, Hadrien Vignaud, Adolfo G Grushin, Cécile Repellin, Kenji Watanabe, Takashi Taniguchi, Frédéric Gay, Clemens B Winkelmann, Hervé Courtois, et al., “Imaging tunable quantum Hall broken-symmetry orders in graphene,” Nature 605, 51–56 (2022).
  7. J Stenger, S Inouye, DM Stamper-Kurn, H-J Miesner, AP Chikkatur,  and W Ketterle, “Spin domains in ground-state Bose–Einstein condensates,” Nature 396, 345–348 (1998).
  8. Dan M. Stamper-Kurn and Masahito Ueda, “Spinor Bose gases: Symmetries, magnetism, and quantum dynamics,” Rev. Mod. Phys. 85, 1191–1244 (2013).
  9. Alina Blinova, Roberto Zamora-Zamora, Tuomas Ollikainen, Markus Kivioja, Mikko Möttönen,  and David S Hall, “Observation of an Alice ring in a Bose–Einstein condensate,” Nature Communications 14, 5100 (2023).
  10. Rodney E. S. Polkinghorne and Tapio P. Simula, ‘‘Two Nambu-Goldstone zero modes for rotating Bose-Einstein condensates,” Phys. Rev. A 104, L061301 (2021).
  11. L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos,  and F. Ferlaino, “Quantum-Fluctuation-Driven Crossover from a Dilute Bose-Einstein Condensate to a Macrodroplet in a Dipolar Quantum Fluid,” Phys. Rev. X 6, 041039 (2016).
  12. C. R. Cabrera and L. Tanzi and J. Sanz and B. Naylor and P. Thomas and P. Cheiney and L. Tarruell, “Quantum liquid droplets in a mixture of bose-einstein condensates,” Science 359, 301–304 (2018).
  13. Bin Liu, Hua-Feng Zhang, Rong-Xuan Zhong, Xi-Liang Zhang, Xi-Zhou Qin, Chunqing Huang, Yong-Yao Li,  and Boris A. Malomed, “Symmetry breaking of quantum droplets in a dual-core trap,” Phys. Rev. A 99, 053602 (2019).
  14. Paweł Zin, Maciej Pylak,  and Mariusz Gajda, “Zero-energy modes of two-component Bose–Bose droplets,” New Journal of Physics 23, 033022 (2021).
  15. Frank Wilczek, “Quantum time crystals,” Phys. Rev. Lett. 109, 160401 (2012).
  16. Haruki Watanabe and Masaki Oshikawa, “Absence of Quantum Time Crystals,” Phys. Rev. Lett. 114, 251603 (2015).
  17. Soonwon Choi, Joonhee Choi, Renate Landig, Georg Kucsko, Hengyun Zhou, Junichi Isoya, Fedor Jelezko, Shinobu Onoda, Hitoshi Sumiya, Vedika Khemani, et al., “Observation of discrete time-crystalline order in a disordered dipolar many-body system,” Nature 543, 221–225 (2017).
  18. Jiehang Zhang, PW Hess, A Kyprianidis, P Becker, A Lee, J Smith, G Pagano, I-D Potirniche, Andrew C Potter, A Vishwanath, et al., “Observation of a discrete time crystal,” Nature 543, 217–220 (2017).
  19. J. Smits, L. Liao, H. T. C. Stoof,  and P. van der Straten, “Observation of a space-time crystal in a superfluid quantum gas,” Phys. Rev. Lett. 121, 185301 (2018).
  20. Jared Rovny, Robert L. Blum,  and Sean E. Barrett, “Observation of discrete-time-crystal signatures in an ordered dipolar many-body system,” Phys. Rev. Lett. 120, 180603 (2018).
  21. A. Kyprianidis, F. Machado, W. Morong, P. Becker, K. S. Collins, D. V. Else, L. Feng, P. W. Hess, C. Nayak, G. Pagano, N. Y. Yao,  and C. Monroe, “Observation of a prethermal discrete time crystal,” Science 372, 1192–1196 (2021).
  22. J. Randall, C. E. Bradley, F. V. van der Gronden, A. Galicia, M. H. Abobeih, M. Markham, D. J. Twitchen, F. Machado, N. Y. Yao,  and T. H. Taminiau, “Many-body-localized discrete time crystal with a programmable spin-based quantum simulator,” Science 374, 1474–1478 (2021).
  23. Xiao Mi, Matteo Ippoliti, Chris Quintana, Ami Greene, Zijun Chen, Jonathan Gross, Frank Arute, Kunal Arya, Juan Atalaya, Ryan Babbush, et al., “Time-crystalline eigenstate order on a quantum processor,” Nature 601, 531–536 (2022).
  24. Philipp Frey and Stephan Rachel, “Realization of a discrete time crystal on 57 qubits of a quantum computer,” Science Advances 8, eabm7652 (2022).
  25. S. Autti, V. B. Eltsov,  and G. E. Volovik, “Observation of a time quasicrystal and its transition to a superfluid time crystal,” Phys. Rev. Lett. 120, 215301 (2018).
  26. Phatthamon Kongkhambut, Jim Skulte, Ludwig Mathey, Jayson G. Cosme, Andreas Hemmerich,  and Hans Keßler, “Observation of a continuous time crystal,” Science 377, 670–673 (2022).
  27. Tongjun Liu, Jun-Yu Ou, Kevin F MacDonald,  and Nikolay I Zheludev, “Photonic metamaterial analogue of a continuous time crystal,” Nature Physics , 1–6 (2023).
  28. Krzysztof Sacha, “Modeling spontaneous breaking of time-translation symmetry,” Phys. Rev. A 91, 033617 (2015).
  29. Dominic V. Else, Bela Bauer,  and Chetan Nayak, “Floquet time crystals,” Phys. Rev. Lett. 117, 090402 (2016).
  30. Jon H. Shirley, “Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time,” Phys. Rev. 138, B979–B987 (1965).
  31. Hideo Sambe, “Steady states and quasienergies of a quantum-mechanical system in an oscillating field,” Phys. Rev. A 7, 2203–2213 (1973).
  32. Milena Grifoni and Peter Hänggi, “Driven quantum tunneling,” Physics Reports 304, 229–354 (1998).
  33. Pai Peng, Chao Yin, Xiaoyang Huang, Chandrasekhar Ramanathan,  and Paola Cappellaro, “Floquet prethermalization in dipolar spin chains,” Nature Physics 17, 444–447 (2021).
  34. Netanel H Lindner, Gil Refael,  and Victor Galitski, “Floquet topological insulator in semiconductor quantum wells,” Nature Physics 7, 490–495 (2011).
  35. Toma ž Prosen and Enej Ilievski, “Nonequilibrium phase transition in a periodically driven x⁢y𝑥𝑦xyitalic_x italic_y spin chain,” Phys. Rev. Lett. 107, 060403 (2011).
  36. Yuta Murakami, Martin Eckstein,  and Philipp Werner, “High-harmonic generation in mott insulators,” Phys. Rev. Lett. 121, 057405 (2018).
  37. G. Pieplow, C. E. Creffield,  and F. Sols, “Protected cat states from kinetic driving of a boson gas,” Phys. Rev. Res. 1, 033013 (2019).
  38. Jesús Mateos, Charles E Creffield,  and Fernando Sols, “Superfluidity from correlations in driven boson systems,” New Journal of Physics 25, 063006 (2023).
  39. J. R. M. de Nova and F. Sols, “Continuous-time crystal from a spontaneous many-body Floquet state,” Phys. Rev. A 105, 043302 (2022).
  40. J. R. M. de Nova, S. Finazzi,  and I. Carusotto, “Time-dependent study of a black-hole laser in a flowing atomic condensate,” Phys. Rev. A 94, 043616 (2016).
  41. J. R. M. de Nova, P. F. Palacios, I. Carusotto,  and F. Sols, “Long time universality of black-hole lasers,” New Journal of Physics 23, 023040 (2021).
  42. M. A. Cazalilla, “Effect of Suddenly Turning on Interactions in the Luttinger Model,” Phys. Rev. Lett. 97, 156403 (2006).
  43. Tim Langen, Sebastian Erne, Remi Geiger, Bernhard Rauer, Thomas Schweigler, Maximilian Kuhnert, Wolfgang Rohringer, Igor E. Mazets, Thomas Gasenzer,  and Jörg Schmiedmayer, “Experimental observation of a generalized Gibbs ensemble,” Science 348, 207–211 (2015).
  44. M. Lewenstein and L. You, “Quantum Phase Diffusion of a Bose-Einstein Condensate,” Phys. Rev. Lett. 77, 3489–3493 (1996).
  45. J. Dziarmaga, “Quantum dark soliton: Nonperturbative diffusion of phase and position,” Phys. Rev. A 70, 063616 (2004).
  46. Giovanni I. Martone, Alessio Recati,  and Nicolas Pavloff, “Supersolidity of cnoidal waves in an ultracold bose gas,” Phys. Rev. Res. 3, 013143 (2021).
  47. Uri Peskin and Nimrod Moiseyev, “The solution of the time-dependent Schrödinger equation by the (t,t’) method: Theory, computational algorithm and applications,” The Journal of Chemical Physics 99, 4590–4596 (1993).
  48. Alice Sinatra, Carlos Lobo,  and Yvan Castin, “The truncated Wigner method for Bose-condensed gases: limits of validity and applications,” J. Phys. B: At. Mol. Opt. Phys 35, 3599 (2002).
  49. Iacopo Carusotto, Serena Fagnocchi, Alessio Recati, Roberto Balbinot,  and Alessandro Fabbri, “Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates,” New J. Phys. 10, 103001 (2008).
  50. Jeffrey Goldstone, Abdus Salam,  and Steven Weinberg, “Broken symmetries,” Phys. Rev. 127, 965–970 (1962).
  51. Technically, the extremization condition is ⟨δ⁢Ψ⁢(t)|⁢i⁢ℏ⁢∂t−H^⁢|Ψ⁢(t)⟩=0bra𝛿Ψ𝑡𝑖Planck-constant-over-2-pisubscript𝑡^𝐻ketΨ𝑡0\mathinner{\langle{\delta\Psi(t)}|}i\hbar\partial_{t}-\hat{H}\mathinner{|{\Psi% (t)}\rangle}=0start_ATOM ⟨ italic_δ roman_Ψ ( italic_t ) | end_ATOM italic_i roman_ℏ ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - over^ start_ARG italic_H end_ARG start_ATOM | roman_Ψ ( italic_t ) ⟩ end_ATOM = 0.
  52. A. R. DeAngelis and G. Gatoff, “Generalization of the Frenkel-Dirac variational principle for systems outside thermal equilibrium,” Phys. Rev. C 43, 2747–2752 (1991).
  53. G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid, Masters Series in Physics and Astronomy (Cambridge University Press, 2005).
  54. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner,  and P. Zoller, “Cold bosonic atoms in optical lattices,” Phys. Rev. Lett. 81, 3108–3111 (1998).
  55. J. Caillat, J. Zanghellini, M. Kitzler, O. Koch, W. Kreuzer,  and A. Scrinzi, “Correlated multielectron systems in strong laser fields: A multiconfiguration time-dependent Hartree-Fock approach,” Phys. Rev. A 71, 012712 (2005).
  56. Ofir E. Alon, Alexej I. Streltsov,  and Lorenz S. Cederbaum, “Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems,” Phys. Rev. A 77, 033613 (2008).
  57. Fabio Caleffi, Massimo Capone, Chiara Menotti, Iacopo Carusotto,  and Alessio Recati, “Quantum fluctuations beyond the Gutzwiller approximation in the Bose-Hubbard model,” Phys. Rev. Research 2, 033276 (2020).
  58. David J Thouless, The quantum mechanics of many-body systems (Courier Corporation, 2014).
  59. Steven Weinberg, “Approximate Symmetries and Pseudo-Goldstone Bosons,” Phys. Rev. Lett. 29, 1698–1701 (1972).
  60. Howard Georgi and A. Pais, “Vacuum symmetry and the pseudo-Goldstone phenomenon,” Phys. Rev. D 12, 508–512 (1975).
  61. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-particle Systems, Dover Books on Physics (Dover Publications, 2003).
  62. Haruki Watanabe and Hitoshi Murayama, “Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance,” Phys. Rev. Lett. 108, 251602 (2012).
  63. Yoshimasa Hidaka, “Counting Rule for Nambu-Goldstone Modes in Nonrelativistic Systems,” Phys. Rev. Lett. 110, 091601 (2013).
  64. Haruki Watanabe, “Counting Rules of Nambu-Goldstone Modes,” Annu. Rev. Condens. Matter Phys. 11, 169 (2020).
  65. Strictly speaking, it should be WA=i⁢(⟨Ψ0|∂AΨ0⟩−⟨∂AΨ0|Ψ0⟩)/2subscript𝑊𝐴𝑖inner-productsubscriptΨ0subscript𝐴subscriptΨ0inner-productsubscript𝐴subscriptΨ0subscriptΨ02W_{A}=i(\mathinner{\langle{\Psi_{0}|\partial_{A}\Psi_{0}}\rangle}-\mathinner{% \langle{\partial_{A}\Psi_{0}|\Psi_{0}}\rangle})/2italic_W start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT = italic_i ( start_ATOM ⟨ roman_Ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT | ∂ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT roman_Ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ⟩ end_ATOM - start_ATOM ⟨ ∂ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT roman_Ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT | roman_Ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ⟩ end_ATOM ) / 2 to ensure that WAsubscript𝑊𝐴W_{A}italic_W start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT is real since ∂A⟨Ψ0|Ψ0⟩=∂AN≠0subscript𝐴inner-productsubscriptΨ0subscriptΨ0subscript𝐴𝑁0\partial_{A}\mathinner{\langle{\Psi_{0}|\Psi_{0}}\rangle}=\partial_{A}N\neq 0∂ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT start_ATOM ⟨ roman_Ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT | roman_Ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ⟩ end_ATOM = ∂ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT italic_N ≠ 0.
  66. Chiara Menotti and Sandro Stringari, “Collective oscillations of a one-dimensional trapped Bose-Einstein gas,” Phys. Rev. A 66, 043610 (2002).
  67. H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch,  and E. Arimondo, “Dynamical control of matter-wave tunneling in periodic potentials,” Phys. Rev. Lett. 99, 220403 (2007).
  68. Christopher Gaul, Elena Díaz, Rodrigo P. A. Lima, Francisco Domínguez-Adame,  and Cord A. Müller, “Stability and decay of Bloch oscillations in the presence of time-dependent nonlinearity,” Phys. Rev. A 84, 053627 (2011).
  69. Ákos Rapp, Xiaolong Deng,  and Luis Santos, “Ultracold lattice gases with periodically modulated interactions,” Phys. Rev. Lett. 109, 203005 (2012).
  70. Thilo Stöferle, Henning Moritz, Christian Schori, Michael Köhl,  and Tilman Esslinger, “Transition from a Strongly Interacting 1D Superfluid to a Mott Insulator,” Phys. Rev. Lett. 92, 130403 (2004).
  71. Christophe Mora and Yvan Castin, “Extension of Bogoliubov theory to quasicondensates,” Phys. Rev. A 67, 053615 (2003).
  72. Vincent Hakim, “Nonlinear Schrödinger flow past an obstacle in one dimension,” Phys. Rev. E 55, 2835–2845 (1997).
  73. Nicolas Pavloff, “Breakdown of superfluidity of an atom laser past an obstacle,” Phys. Rev. A 66, 013610 (2002).
  74. P. Engels and C. Atherton, ‘‘Stationary and Nonstationary Fluid Flow of a Bose-Einstein Condensate Through a Penetrable Barrier,” Phys. Rev. Lett. 99, 160405 (2007).
  75. Jason H. V. Nguyen, De Luo,  and Randall G. Hulet, “Formation of matter-wave soliton trains by modulational instability,” Science 356, 422–426 (2017).
  76. Dries Sels and Eugene Demler, “Thermal radiation and dissipative phase transition in a BEC with local loss,” Annals of Physics 412, 168021 (2020).
  77. Hikaru Tamura, Sergei Khlebnikov, Cheng-An Chen,  and Chen-Lung Hung, “Observation of self-oscillating supersonic flow across an acoustic horizon in two dimensions,” arXiv preprint arXiv:2304.10667  (2023).
  78. Florent Michel and Renaud Parentani, “Saturation of black hole lasers in Bose-Einstein condensates,” Phys. Rev. D 88, 125012 (2013).
  79. Michael Moeckel and Stefan Kehrein, “Interaction Quench in the Hubbard Model,” Phys. Rev. Lett. 100, 175702 (2008).
  80. Bruno Sciolla and Giulio Biroli, “Quantum Quenches and Off-Equilibrium Dynamical Transition in the Infinite-Dimensional Bose-Hubbard Model,” Phys. Rev. Lett. 105, 220401 (2010).
  81. Johannes Lang, Bernhard Frank,  and Jad C. Halimeh, “Dynamical quantum phase transitions: A geometric picture,” Phys. Rev. Lett. 121, 130603 (2018).
  82. Juan Ramón Muñoz de Nova and Fernando Sols, “Black-hole laser to Bogoliubov-Cherenkov-Landau crossover: From nonlinear to linear quantum amplification,” Phys. Rev. Res. 5, 043282 (2023).
  83. J. Steinhauer, “Observation of quantum Hawking radiation and its entanglement in an analogue black hole,” Nature Physics 12, 959 (2016).
  84. J. R. M. de Nova, K. Golubkov, V. I. Kolobov,  and J. Steinhauer, “Observation of thermal Hawking radiation and its temperature in an analogue black hole,” Nature 569, 688 (2019).
  85. Victor I Kolobov, Katrine Golubkov, Juan Ramón Muñoz de Nova,  and Jeff Steinhauer, “Observation of stationary spontaneous Hawking radiation and the time evolution of an analogue black hole,” Nature Physics 17, 362–367 (2021).
  86. Caio C. Holanda Ribeiro, Sang-Shin Baak,  and Uwe R. Fischer, “Existence of steady-state black hole analogs in finite quasi-one-dimensional Bose-Einstein condensates,” Phys. Rev. D 105, 124066 (2022).
  87. Krzysztof Sacha, Cord A. Müller, Dominique Delande,  and Jakub Zakrzewski, “Anderson localization of solitons,” Phys. Rev. Lett. 103, 210402 (2009).
  88. D. M. Gangardt and A. Kamenev, “Quantum decay of dark solitons,” Phys. Rev. Lett. 104, 190402 (2010).
  89. Dominic C. Wadkin-Snaith and Dimitri M. Gangardt, “Quantum gray solitons in confining potentials,” Phys. Rev. Lett. 108, 085301 (2012).
  90. P. B. Walczak and J. R. Anglin, “Exact Bogoliubov–de Gennes solutions for gray-soliton backgrounds,” Phys. Rev. A 84, 013611 (2011).
  91. Oleksandr V. Marchukov, Boris A. Malomed, Vanja Dunjko, Joanna Ruhl, Maxim Olshanii, Randall G. Hulet,  and Vladimir A. Yurovsky, “Quantum Fluctuations of the Center of Mass and Relative Parameters of Nonlinear Schrödinger Breathers,” Phys. Rev. Lett. 125, 050405 (2020).
  92. Daisuke A Takahashi and Muneto Nitta, “Counting rule of Nambu–Goldstone modes for internal and spacetime symmetries: Bogoliubov theory approach,” Annals of Physics 354, 101–156 (2015).
  93. Peter Kramer and Marcos Saraceno, “Geometry of the time-dependent variational principle in quantum mechanics,” in Group Theoretical Methods in Physics: Proceedings of the IX International Colloquium Held at Cocoyoc, México, June 23–27, 1980 (Springer, 2005) pp. 112–121.
  94. P Kramer, “A review of the time-dependent variational principle,” J. Phys.: Conf. Ser. 99, 012009 (2008).
  95. Jere T Mäkinen, Samuli Autti,  and Vladimir B Eltsov, “Magnon Bose-Einstein condensates: from time crystals and quantum chromodynamics to vortex sensing and cosmology,” arXiv preprint arXiv:2312.10119  (2023).
  96. Peter D Drummond and Mark Hillery, The quantum theory of nonlinear optics (Cambridge University Press, 2014).
  97. Iacopo Carusotto and Cristiano Ciuti, “Quantum fluids of light,” Rev. Mod. Phys. 85, 299–366 (2013).
  98. J. R. M. de Nova and I. Zapata, “Symmetry characterization of the collective modes of the phase diagram of the ν=0𝜈0\nu=0italic_ν = 0 quantum Hall state in graphene: Mean-field phase diagram and spontaneously broken symmetries,” Phys. Rev. B 95, 165427 (2017).
  99. Luca D’Alessio and Marcos Rigol, “Long-time behavior of isolated periodically driven interacting lattice systems,” Phys. Rev. X 4, 041048 (2014).
  100. Achilleas Lazarides, Arnab Das,  and Roderich Moessner, “Equilibrium states of generic quantum systems subject to periodic driving,” Phys. Rev. E 90, 012110 (2014).
  101. Andrea Pizzi, Andreas Nunnenkamp,  and Johannes Knolle, “Classical prethermal phases of matter,” Phys. Rev. Lett. 127, 140602 (2021).
  102. Bingtian Ye, Francisco Machado,  and Norman Y. Yao, “Floquet phases of matter via classical prethermalization,” Phys. Rev. Lett. 127, 140603 (2021).
  103. Y. Aharonov and D. Bohm, “Time in the quantum theory and the uncertainty relation for time and energy,” Phys. Rev. 122, 1649–1658 (1961).
  104. Leonard Susskind and Jonathan Glogower, ‘‘Quantum mechanical phase and time operator,” Physics Physique Fizika 1, 49–61 (1964).
  105. William G. Unruh and Robert M. Wald, “Time and the interpretation of canonical quantum gravity,” Phys. Rev. D 40, 2598–2614 (1989).
  106. Philipp A. Höhn, Alexander R. H. Smith,  and Maximilian P. E. Lock, “Trinity of relational quantum dynamics,” Phys. Rev. D 104, 066001 (2021).
  107. Cameron Booker, Berislav Buča,  and Dieter Jaksch, “Non-stationarity and dissipative time crystals: spectral properties and finite-size effects,” New Journal of Physics 22, 085007 (2020).
  108. Andrzej Syrwid, Jakub Zakrzewski,  and Krzysztof Sacha, “Time crystal behavior of excited eigenstates,” Phys. Rev. Lett. 119, 250602 (2017).
  109. Alexander J. E. Kreil, Halyna Yu. Musiienko-Shmarova, Sebastian Eggert, Alexander A. Serga, Burkard Hillebrands, Dmytro A. Bozhko, Anna Pomyalov,  and Victor S. L’vov, “Tunable space-time crystal in room-temperature magnetodielectrics,” Phys. Rev. B 100, 020406 (2019).
  110. Nick Träger, Paweł Gruszecki, Filip Lisiecki, Felix Groß, Johannes Förster, Markus Weigand, Hubert Głowiński, Piotr Kuświk, Janusz Dubowik, Gisela Schütz, Maciej Krawczyk,  and Joachim Gräfe, “Real-space observation of magnon interaction with driven space-time crystals,” Phys. Rev. Lett. 126, 057201 (2021).
  111. Matthew S. Foster, Victor Gurarie, Maxim Dzero,  and Emil A. Yuzbashyan, “Quench-Induced Floquet Topological p𝑝pitalic_p-Wave Superfluids,” Phys. Rev. Lett. 113, 076403 (2014).
  112. E. Perfetto and G. Stefanucci, “Floquet Topological Phase of Nondriven p𝑝pitalic_p-Wave Nonequilibrium Excitonic Insulators,” Phys. Rev. Lett. 125, 106401 (2020).
  113. Anthony J. Leggett and Fernando Sols, “On the concept of spontaneously broken gauge symmetry in condensed matter physics,” Foundations of Physics 21, 353–364 (1991).
  114. F. Sols, “Randomization of the phase after suppression of the Josephson coupling,” Physica B: Condensed Matter 194, 1389–1390 (1994).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: