Broadband spectroscopy of quantum noise (2402.10438v1)
Abstract: Characterizing noise is key to the optimal control of the quantum system it affects. Using a single-qubit probe and appropriate sequences of $\pi$ and non-$\pi$ pulses, we show how one can characterize the noise a quantum bath generates across a wide range of frequencies -- including frequencies below the limit set by the probe's $\mathbb{T}_2$ time. To do so we leverage an exact expression for the dynamics of the probe in the presence of non-$\pi$ pulses, and a general inequality between the symmetric (classical) and anti-symmetric (quantum) components of the noise spectrum generated by a Gaussian bath. Simulation demonstrates the effectiveness of our method.
- J. P. Dowling and G. J. Milburn, Philos. Trans. Royal Soc. 361, 1655 (2003).
- J. Preskill, Quantum 2, 79 (2018).
- L. M. Norris, D. Lucarelli, V. M. Frey, S. Mavadia, M. J. Biercuk, and L. Viola, Phys. Rev. A 98, 032315 (2018).
- A. Vezvaee, N. Shitara, S. Sun, and A. Montoya-Castillo, arXiv:2210.00386 (2022).
- T. Chalermpusitarak, B. Tonekaboni, Y. Wang, L. M. Norris, L. Viola, and G. A. Paz-Silva, PRX Quantum 2, 030315 (2021).
- W. Dong, G. A. Paz-Silva, and L. Viola, Appl. Phys. Lett. 122, 244001 (2023).
- G. A. L. White, C. D. Hill, F. A. Pollock, L. C. L. Hollenberg, and K. Modi, Nat. Commun. 11, 6301 (2020).
- P. Wang, C. Chen, and R.-B. Liu, Chin. Phys. Lett. 38, 010301 (2021).
- E. Paladino, Y. M. Galperin, G. Falci, and B. L. Altshuler, Rev. Mod. Phys. 86, 361 (2014).
- L. M. Norris, G. A. Paz-Silva, and L. Viola, Phys. Rev. Lett. 116, 150503 (2016).
- R. Barr, Y. Oda, G. Quiroz, B. D. Clader, and L. M. Norris, Phys. Rev. A 106, 022425 (2022).
- G. A. Paz-Silva, L. M. Norris, F. Beaudoin, and L. Viola, Phys. Rev. A 100, 042334 (2019).
- F. Sakuldee and Ł. Cywiński, Phys. Rev. A 101, 012314 (2020).
- F. Sakuldee and Ł. Cywiński, Phys. Rev. A 101, 042329 (2020).
- T. Fink and H. Bluhm, Phys. Rev. Lett. 110, 010403 (2013).
- A. Laraoui, F. Dolde, C. Burk, F. Reinhard, J. Wrachtrup, and C. A. Meriles, Nat. Commun. 4, 1651 (2013).
- F. A. Pollock, C. Rodríguez-Rosario, T. Frauenheim, M. Paternostro, and K. Modi, Phys. Rev. A 97, 012127 (2018).
- R. Kubo, J. Phys. Soc. Jpn. 17, 1100-1120 (1962).
- E. L. Hahn, Phys. Rev. 80, 580 (1950).
- K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett. 95, 180501 (2005).
- K. Khodjasteh and D. A. Lidar, Phys. Rev. A 75, 062310 (2007).
- C. Ferrie, C. Granade, G. Paz-Silva, and H. M. Wiseman, New J. Phys. 20, 123005 (2018).
- H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
- R. Kubo, J. Phys. Soc. Jpn. 12, 570-586 (1957).
- R. J. Schoelkopf, A. A. Clerk, S. M. Girvin, K. W. Lehnert, and M. H. Devoret, “Qubits as spectrometers of quantum noise,” in Quantum Noise in Mesoscopic Physics, edited by Y. V. Nazarov (Springer, Dordrecht, 2003), pp. 175–203.
- T. Yuge, S. Sasaki, and Y. Hirayama, Phys. Rev. Lett. 107, 170504 (2011).
- F. Yan, J. Bylander, S. Gustavsson, F. Yoshihara, K. Harrabi, D. G. Cory, T. P. Orlando, Y. Nakamura, J.-S. Tsai, and W. D. Oliver, Phys. Rev. B 85, 174521 (2012).
- W. B. Mims, Phys. Rev. B 5, 2409 (1972).
- J. R. Klauder, and P. W. Anderson, Phys. Rev. 125, 912 (1962).
- J. Zhang, and M. Sarovar, Phys. Rev. Lett. 113, 080401 (2014).
- C. R. Nassar, Telecommunications Demystified (Elsevier, 2013).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.